
Linux Terminal

Naavin Ravinthran
SIG Cybersecurity – Monash University (Malaysia)

1 Meme
Note to self, delete this later and find more appropriate meme to lighten mood.

Figure 1: A humourous mug.

1

Figure 2: XKCD Comic #196

2 Acknowledgement
A lot of the introductory sections use content from Digitalocean’s Introduction
to the Linux Terminal1. Also of note is Greg’s Wiki Bash tutorial.

3 Terminal Emulator
From DigitalOcean, A terminal emulator is a program that allows the use of the
terminal in a graphical environment.

4 Shell
From DigitalOcean, In a Linux system, the shell is a command-line interface that
interprets a user’s commands and script files, and tells the server’s operating
system what to do with them. There are several shells that are widely used,
such as Bourne shell (sh) and C shell (csh). If you’re on Windows, I suggest
getting Windows Terminal from the Microsoft Store, as well as getting WSL2
(sort of like a Linux virtual machine) installed as well, prefarably something
Debian-based like Ubuntu.

5 Navigating
Usually, when you open your terminal, you’ll be started off in your home direc-
tory. Sometimes your prompt will use a shorthand symbol “~” for your home
directory. You can use pwd to print your working directory, i.e: The directory
you are currently on.

You can find the File System Hierarchy Standard here2. Most of the time,
you’ll just be working in the “/home/<user>” directory (Similar to the “C:/Users/<username>”
directory3, maybe going into “/mnt” if you have a pen drive, going into “/var/”

0XKCD Comic source: https://xkcd.com/196/
1https://www.digitalocean.com/community/tutorials/an-introduction-to-the-linux-terminal
2https://refspecs.linuxfoundation.org/fhs.shtml
3I generally use the term “directory” over “folder”

2

https://xkcd.com/196/
https://www.digitalocean.com/community/tutorials/an-introduction-to-the-linux-terminal
https://www.digitalocean.com/community/tutorials/an-introduction-to-the-linux-terminal
https://mywiki.wooledge.org/BashGuide
https://refspecs.linuxfoundation.org/fhs.shtml
https://xkcd.com/196/
https://www.digitalocean.com/community/tutorials/an-introduction-to-the-linux-terminal
https://refspecs.linuxfoundation.org/fhs.shtml

for application specific configuration files (The directory “/var/log/” has lots of
logs, for example your web server logs for in “/var/log/apache2/access.log”, or
“/var/www/html” or similar is often the directory for the files in a web server.)

5.1 Listing files and folders
You can list file with the ls command.

$ l s
d i r 1 f i l e 1 f i l e 2

You can view more options with −−help, generally, a lot of programs have
this option or something similar to it. Of interest is the “ ls −al” command,
which gives a slightly more comprehensive listing.

$ l s −a l
t o t a l 4
drwxr−xr−x 3 b1temy b1temy 120 Apr 22 11 :10 .
drwxrwxrwt 26 root root 740 Apr 22 11 :10 . .
drwxr−xr−x 2 b1temy b1temy 40 Apr 21 19 :39 d i r 1
−rw−r−−r−− 1 b1temy b1temy 0 Apr 21 19 :39 f i l e 1
−rw−r−−r−− 1 b1temy b1temy 0 Apr 21 19 :39 f i l e 2
−rw−r−−r−− 1 b1temy b1temy 30 Apr 22 11 :10 . h idden_f i l e

The single “.” refers to the current directory, and two dots refer to the parent
directory. So if you were in a directory “C:/Users/User/Documents/Homework”,
its parent directory would be “C:/Users/User/Documents”. If you’re wondering
what the use of a dot for current directory is, I suppose one use I can think of
is when you need to pass to a program a directory, and you want to use the
current directory that you are in.

The “.hidden_file” is a file that starts with a dot. Files and directories
starting with a fullstop are usually hidden by default; it is not a security feat-
uere! The purpose is simply not to clutter up your display. Usually used for
configuration files/directories of applications.

You can navigate with the cd <directory> (change directory). You can “cd
.. ” or “cd dir1” or even specify an absolute directory like cd /home/<user>.
PS: You can also do “ ls <directory>” to list files in that directory.

6 Arguments and Environment Variables
You have already seen the arguments from “−−help”.

Make a python file using “vim” or “vi”, hit the “i” key, and enter the following.
Then, when you’re done, hit “Escape” on your keyboards, then type “:wq” and
hit Return (Enter). 4

Unfortunately, you’ll probably have to write it manually instead of copy
pasting.

#!/ usr / b in /env python
import sys
import os

4If anyone is interested in an informal Vim workshop, I wouldn’t mind.

3

i f __name__ == ’__main__ ’ :
print (f "Arguments : ␣{ sys . argv}")
print (f "Environment␣Var iab l e s : ␣{ os . env i ron }")

You can then run it with python <filename>.txt. Before we look at the
output, let’s see another way to execute it.

$ l s −a l f i l e . py
$ chmod +x f i l e . py
$ l s −a l f i l e . py
$. / f i l e . py

The reason this works is because of the shebang 5 at the start of the python
file, which tells the shell how to execute it. if you’ve ever wondered why that
was there, now you know.6.

Anyway, you might see something like this:-

$ python args_envs . py
Arguments : [’ args_envs . py ’]
Environment Var iab l e s : env i ron ({<... >}

Ignore the environment varibles for now. Note how the arguments variable is a
python list of strings, with the first one being the name of the program. Now
try several of these commands.

$ python args_envs . py arg1
Arguments : [’ args_envs . py ’ , ’ arg1 ’]
<...>
$ python args_envs . py arg1 arg2
Arguments : [’ args_envs . py ’ , ’ arg1 ’ , ’ arg2 ’]
<...>
$ python args_envs . py " arg1 ␣ arg2 "
Arguments : [’ args_envs . py ’ , ’ arg1 ␣ arg2 ’]
<...>

Note how we added the quotation marks to make it a single string in the
list. Python programs (And other languages like C or C++ as well) can use
these to figure out the options from the user.7

As for the environment variables, you can set one by putting “KEY=VAL
” before executing the program. This isn’t as commonly done, but it is still
sometimes used. Additionally, the PATH environment variable is used so that
you can execute programs from other directories (e.g: “/usr/bin”).

$ TEST_VAR=TEST_VAL python args_envs . py arg1
Arguments : [’ args_envs . py ’ , ’ arg1 ’]
Environment Var iab l e s : env i ron ({ <.. . > , ’TEST_VAR’ : ’

TEST_VAL’ })
5https://linuxhandbook.com/shebang/
6Sometimes you might see #!/usr/bin/python instead, which directly tells you to execute

it with the python stored in the “/usr/bin/python” path. The reason we use “env” is that
running this will use the currently configured python command instead of fixing the one in
that directory. If you’ve used python virtual environments before, that would be one example
where you would want to execute the virtual environment’s python executable instead of the
system version.

7You might want to look into the argparse module in the python standard library.

4

https://linuxhandbook.com/shebang/
https://linuxhandbook.com/shebang/
https://docs.python.org/3/howto/argparse.html

7 Printing out file contents
There are a ton of built-in commands, most of which are either built-into bash
(See: “man bash”, which is sort of like a terminal-based manual), or are in a
directory such as “/usr/bin”. One such command is “less”. Use it like so.

$ l e s s . h idden_f i l e
Hel lo , t h i s i s a hidden f i l e !

For longer files, you may need to scroll using the arrow keys. You can hit
the “q” key to exit. Some resources online may also point you towards using
the “cat” command, which stands for “concatenate”. Its meant to be used to
concatenating and printing out the contents of multiple files (e.g: “cat file1
file2”), but it can be used with just a single file too.

8 Linux I/O Redirection
Occasionally, you may want to output the output of the file to a file. You can
do this by placing “> outputfile.txt” at the end of your command.

9 Command Injection
Consider this program that will take in your name, and print it out.

#!/ usr / b in /env python
import sys

i f __name__ == ’__main__ ’ :
i f len (sys . argv) < 2 :

print (f "Usage : ␣ . /{ sys . argv [0] } ␣<your_name>")
else :

print (f "He l lo ␣ the re ␣{ sys . argv [1] } ! ")

So you can run it like so.

$. / h e l l o . py "My Name"
He l lo the re My Name !

But imagine that we had another program calling this with user input, feed-
ing directly to the terminal, like so.

#!/ usr / bin /env python
import os
import sys
i f __name__ == ’__main__’ :

i f l en (sys . argv) > 1 :
os . system (f "python h e l l o . py { sys . argv [1] } ")

Using any sort of system call is bad practice, and is usually avoided and API
calls or a library is used instead. Also, this isn’t really a realistic example, but
imagine perhaps maybe you’re running a PHP server instead that wants to call
the python file, and you’re rather lazy to figure out how to call a python file
from php, and instead using a similar command like “shell_execute”.

5

$ python bad . py " t e s t ; cat . h idden_f i l e "
He l lo the re t e s t !
Hel lo , t h i s i s a hidden f i l e !

Now, you can see that even though the input was supposed to be just for
the name to be passed into for “hello.py”, because I put a semicolon, it was able
to execute a different command directly after that!

10 Common files of interest
1. /etc/passwd

2. /home/<user>/.bash_history

3. /home/<user>/.bashrc

“/etc/passwd” stores the usernames of the users of the computer, as well as
a hashed+salted version of their password. There are tools such as John the
Ripper to brute-force the passwords and try to crack it.

“bash_history” is simply a history of all the previous commands ran by the
user. It is useful for seeing what the last commands of the user were. For
example, maybe a developer put his API Key in the environment variable when
starting a web service.

API_KEY=344AAB9758BB0D018B93739E7893FB3A node .
And now you have their API key. I have actually seen this file in the Monash

provided VMs before, though they didn’t really contain anything interesting
besides setup for the machine, which is why I guess they left it there.

“bashrc” is executed every starting time you start up your terminal. 8

Note that for the latter two, they are exclusive to the bash shell. Other
shells will have their own files for this.

11 Example Programs
There is a user-contributed list of resources for a ton of different areas of com-
puter science called the awesome list. They have a section on Security tools.
They’re not all exclusively terminal-based, some use a GUI, some run on Win-
dows, some are even web based, and some are libraries for programming lan-
guages. But it is still very likely you’ll come across a terminal-only tool at some
point or another.

12 Gotchas

12.1 Stopping a program
Ctrl+C

8I personally like the use the “fortune” program to give a nice message every time I start
up my terminal, as well as perhaps piping it through “cowsay” and/or “lolcat” for fun!

6

https://github.com/openwall/john
https://github.com/openwall/john
https://github.com/sindresorhus/awesome#security

12.2 Special characters
Occasionally, you may want to use some reserved keywords of the shell, like the
& operator, or the wildcard ? operator. 9.

Perhaps you found an API10 like this Cat Facts11 API that you want to use.
After reading the documentation, you decide to test it with the following.

$ cu r l −L https : // cat−fa c t . herokuapp . com/ f a c t s /random?
animal_type=cat&amount=1

[1] 13971
zsh : no matches found : https : // cat−fa c t . herokuapp . com/

f a c t s /random?animal_type=cat
[1] + 13971 exit 1 cu r l −L https : // cat−fa c t .

herokuapp . com/ f a c t s /random?animal_type=cat

The “-L” is just to follow redirects. It’s a habit of mine to use it. You can
find a full list of arguments to use using curl −−help all, since it’s quite long,
you might want to pipe it through less , such as curl −−help all | less .

Note if you’re using this on bash or another shell, you may get some results,
but there will probably also be some errors.

The reason is that there are several reserved keywords being used, such as
the & opeartor, and the = operator and the ? operator. You could manually
escape it with \&. But you can also just wrap it with quotation marks.

$ cu r l −L " https : // cat−f a c t . herokuapp . com/ f a c t s /random?
animal_type=cat&amount=1"

{" s t a tu s " : { " v e r i f i e d " : true , " sentCount" : 1} , "_id" : "58
e008800aac31001185ed07" , " user " : "58
e007480aac31001185ece f " , " t ex t " : "Wikipedia ␣has␣a␣
r e co rd ing ␣ o f ␣a␣ cat ␣meowing , ␣ because ␣why␣not ?" , "__v"
: 0 , " source " : " user " , "updatedAt" : "2020−08−23T20
: 2 0 : 0 1 . 6 1 1Z" , " type " : " cat " , " createdAt " : "2018−03−06T21
: 2 0 : 0 3 . 5 0 5Z" , " de l e t ed " : false , "used" : fa l se }

If you’re wondering why your terminal didn’t end up on a new line, it’s
because the output of the program didn’t include a newline. My shell (zsh)
set up my system to handle for this by printing a inverse+bold “%” symbol to
indicate that there isn’t a newline. But that’s not too important.

13 Notes

13.1 Shell scripting
Occasionally you might find some “sh” files, which are files that basically execute
the commands you have learnt.

9See: “Special Parameters” after running man bash for a full list and description of what
it does.

10For a list of free public APIs, see https://github.com/public-apis/public-apis
11https://alexwohlbruck.github.io/cat-facts/

7

https://alexwohlbruck.github.io/cat-facts/
https://github.com/public-apis/public-apis
https://alexwohlbruck.github.io/cat-facts/

13.2 Windows
Windows used to (and still does) have this DOS-like terminal, “cmd”. You could
do some basic scripting in the “.bat” files, which you might have heard of and
were popular in the late 2000s. There are many differences, such as the “dir”
command instead of “ls”.

A few years ago, Microsoft really started pushing Powershell. While I ini-
tially despised it for its weird syntax of commands (“cmdlets”) with a “Verb-
Noun” naming scheme, and hating the default blue terminal, it does I suppose
have its uses. You can learn more about powershell in Microsoft’s website here
12.

I have seen some CTFs and some malware hiding in obfuscated Powershell
scripts before.

13.3 Macs
I have no tried, but I believe that Macs use the “zsh” shell, and it should be
somewhat similar to what was learnt above. Mac is also what is called a “UNIX-
like” operating system, which means it conforms to certain specifications, and
Linux distros are also UNIX-like. Note that Macs don’t come with the GNU core
utilities13 and instead use their own versions, so there might be some differences.

13.4 FreeBSD
FreeBSD and its derivatives also are UNIX-like operating systems, and so it
should also be similar. Note that FreeBSD also doesn’t come with GNU core
utilities.

13.5 Additional Info
There are a ton more commands and programs out there. You can read through
the manual “man bash” and/or “info coreutils”,

12https://docs.microsoft.com/en-us/learn/modules/introduction-to-powershell/
13Enter: info coreutils to see what this encompasses

8

https://docs.microsoft.com/en-us/learn/modules/introduction-to-powershell/
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Shell-Builtin-Commands
https://docs.microsoft.com/en-us/learn/modules/introduction-to-powershell/

	Meme
	Acknowledgement
	Terminal Emulator
	Shell
	Navigating
	Listing files and folders

	Arguments and Environment Variables
	Printing out file contents
	Pipes
	Command Injection
	Common files of interest
	Example Programs
	Gotchas
	Stopping a program
	Special characters

	Notes
	Shell scripting
	Windows
	Macs
	FreeBSD

