
Emulators, Disassembly, and Anti-Debug tricks

赖纳文

December 17 2020

Abstract
This paper, as the title suggests, intro-
duces a brief overview on several topics,
including but not limited to:-

• Emulators1

• Disassemblers

• Some simple Anti-Debug tricks

For the purposes of demonstration, I will
define a toy CPU architecture to emulate
and to disassemble programs for that
specific CPU architecture.

1 Introduction
I should start off with setting expecta-
tions. This is mostly just enough infor-
mation to complete the challenge, and
some extra information sprinkled in for
your additional knowledge. It is not ex-
tensive however, and it is an extremely
large topic that I could not possibly hope

1There is some discussion to be had on the
difference between Emulators, Simulators and
Interpreters (and perhaps some other things like
Virtual Machines), which will be discussed later
on.

to explain, even just only all the inter-
esting bits, in this one paper. I should
also mention that I am in no way respon-
sible for any false information in this
paper, although I do not believe I have
made any extraneous errors, I do not
take any responsibility for any that may
have slipped through. Let me first start
off by defining what the terms in the title
of the paper means.

1.1 Emulator
Let’s start off with the Emulator. You,
the reader, might be familiar with the
type of Emulator used to play video
games originally meant to be played on
consoles, on some other device such as
your laptop. Perhaps you have run Des-
MuME to play Nintendo DS games, or
ePSXE to play Playstation games, bsnes
for SNES games, Retroarch, PCSX2,
DosBOX, and the list goes on. 2. There

2The legality of these are up for debate, and
which I would rather not get into here. The ar-
gument is that these are important for historical
archival purposes, as in the present for exam-
ple, obtaining a working NES device can be a
difficult process, and eventually if no emulators
exist, the NES games would be lost and can
never be played again. As for modern games

1

are other applications however, such as
in multi-platform development (e.g: de-
veloping for embedded devices), where
for example a developer is in an x86 envi-
ronment and needs to develop for a ARM
environment in the case of developing for
an embedded device. Or more often, an
Android developer using Android Stu-
dio would use the Android Emulator to
emulate an Android device.3. Although
emulating the device may not always be
necessary (they could always run or de-
bug it remotely on a separate device),
it can be useful, as it may just save the
hassle of using another device, or if you
don’t happen to have a device of the
targeted architecture.

I had promised an explanation of the
difference between Simulators, Emula-
tors and Interpreters. I found this stack-
overflow answer most useful.4. The gist
of it is that Emulators would attempt to
act as a replacement for the device it is
trying to emulate. A Simulator aims to
replicate down to the internal details of
the device it is trying to simulate. The

being emulated, the argument is that once a
consumer buys a video game, they do not sim-
ply buy a license to play the game, but have
the right to have a ‘backup’ of it, and used how-
ever they see fit. Downloading copies of video
games that you do not own however, has no
such justification.

3This is a bit of a different comparison, An-
droid Studio usually doesn’t emulate an Android
device running on an ARM chip, but rather an
Android device running on an x86 chip, since
that has the benefit of being faster since the
host device is an x86 device, so no translation
layer is necessary.

4Yes I am aware this isn’t as reputable source
as a peer-reviewed journal. This isn’t a real
paper, don’t take it as such.

term interpreter is separate from both
Emulators and Simulators, and simply
refers to the token-by-token parsing, de-
coding and running cycle. If you’re won-
dering why Video Game Emulators don’t
use the word Simulators, it’s because
they don’t aim to accurately simulate
down to the silicon level the hardware
implementation of the devices5, because
that would negatively impact on the per-
formance of the emulator. Instead, they
use a bunch of short cuts and tricks to
make it run faster (e.g: frame skipping).

1.2 Disassembler
To understand what a disassembler is,
you must first understand what an As-
sembler is. An assembler translates as-
sembly code into machine code. For ex-
ample, for an ARM CPU, the following
is valid ARM code (Note that I use ‘0x’
as a hexadecimal prefix for the rest of
the document):-

l a b e l :
MOV r0 , #0xc0
B l a b e l

Nothin very interesting, even without
knowledge of the instructions, one can
infer it is an infinite loop always settings
register r0 to ‘0xc0’ . The point is, the

5There are actually some projects that do
do this however, that is, aim to be as accurate
to the original hardware as possible. But the
name ”emulator” sticks. Either because of the
historical reasons of the word ”Emulator” being
used so often that is carries over, or because it
is very difficult to accurately ”simulate” every-
thing and there are still compromises that the
developer does for the sake of performance.

https://stackoverflow.com/a/1584701
https://stackoverflow.com/a/1584701

assembler will look through it line-by-
line and assembly each instruction based
on the opcode and the arguments used
(There are a few possibly types of argu-
ments, and there are different address-
ing modes, and it is possible to have
no arguments at all. Some examples
of addressing modes are Immediate Ad-
dressing, Indexed Addressing, Indirect
Addressing, etc., you can search up ‘Ad-
dressing Modes’ for more information).
6. So basically this is what the assembler
does (in very simplified terms):-

• Look through line by line for non-
empty lines

• If it is a label, keep track of where
in memory it currently is in

• If it is an instruction, figure out
what the opcode for that instruc-
tion is

• check if it has arguments, and put
that alongside the opcode as fit

• Continue until done

For example, the assembler might see
the opcode ‘MOV” and while keeping in
mind this is not the real ARM opcode,
but rather, something I am making up
for the purpose of demonstration, the
opcode may be ’0x01‘, and the corre-
sponding argument for it to be register
’r0‘ could be ‘0x02’, and finally the last

6The label ‘label’ is not an instruction, and
is instead kept track of and is used to help with
determining where in memory to jump to when
using branching instructions. Besides labels,
some assembly languages also have directives
used which tell the assembler some information.

byte can be simply ‘0xc0’. All-in-all, the
assembler could assemble that instruc-
tion to ‘0x0102c0’ 7. Note that there
exist CPUs with variable length opcodes
as well, which would mean that perhaps
a specific opcode would indicate that it
is an ‘extended’ opcode with two words
instead of just one. In my example, I also
assumed that the instruction, the first
argument, and the second argument, are
each 1 byte large (2 hexadecimal digits).
Although easier to see, in practice this
may not be the case, and for example,
perhaps only 4 bits is used to determine
the instruction, etc.

From the knowledge gleaned from the
Assembler, given the bytes of a program
running on that CPU, one could cre-
ate a Disassembler. It is simply the re-
verse process of the Assembler. Retrieve
the bytes, analyse it, and spit out the
mnemonic that is used for the assembly
language. There is a few things that may
be useful to you to know.

1.2.1 AND masking

If you recall, an AND operation returns
true if and only if both inputs are true.
We can apply the bitwise operator of
AND to two numbers, which will convert
the numbers to binary and compute the
AND for each bit, and then store the re-
sult in a resulting number. For example,
101101012 AND 000011112 would result

7The positioning of what goes where is arbi-
trary and varies from different ISAs, also note
this is an imaginary machine code I made. A
real once would probably have another space for
specifying the addressing mode, among other
things.

in 000001012. An observant reader may
notice that this is merely the lowest 4
bits of the former number. Indeed, the
latter number seems to indicate which
bits are the ‘important’ bits to keep, as
the ones with 1s indicate that it will be
kept 1 (or 0 if the number at that digit
is 0), and if the latter is a 0, it would
be 0 regardless of the other bit. This
can be seen as the concept of ‘masking’,
where the latter number indicates the
‘important’ bits to be kept. Note that
this isn’t exclusive to the lower 4 bits
of a number. You can do this with any
position of the number or of any length.
For example, 111100002 AND 101011112
results in 101000002, and the lower 4 bits
are changed to 0, while the upper 4 bits
remain the same. 8 If you’re wondering
why this is useful for disassemblers, re-
call that assemblers would assemble an
instruction and combine the instruction
opcode with its arguments. At the ini-
tial stage, we do not care about what
the arguments are, and simply want to
know what the instruction. And so if the
pattern is 0xAABBCC where AA is the
instruction opcode, BB is the first argu-
ment, and CC is the second argument,
we can simply do AND ‘0xFF0000’ to
get just ‘0xAA0000’ since we do not care
about BB and CC yet. Similarly, once
we do care about BB and CC, we can
do a similar trick to get BB and CC by
themselves.

8Notice how I swapped orders, this works
because AND is commutative

1.2.2 Bit Shifting

You probably realised something in the
previous section. Once we obtain BB,
it would be in the format ‘0x00BB00’,
when we simply want ‘0xBB’! Using sim-
ple maths, you may realise for example, a
number like 600 can be changed to just 6
by dividing it by 100. This can be decom-
posed into a general solution as ”dividing
it by 10 to the power of < number of dig-
its you want to shift right >”, assuming
that the rightmost digits are 0 (or you
use integer division). The same applies
to numbers in base 2, you can simply
”divide by 2 to the power of < number
of digits you want to shift right >”, but
most languages provide a quicker way to
do this with a bitwise shift (�and �).
As so you can simply shift ‘0x00BB00’
right by one byte (8 binary digits- 8 bits)
and you should obtain he result you are
looking for.

You may be wondering about the case
of labels. In this case, wouldn’t disassem-
bling a label simply give the address of
the label, and not the name of the label
itself? Alas, label names are usually not
preserved in the assembly process, so it
cannot be retrieved by the disassembler.
The best we can do is for the disassem-
bler to keep track of where it jumps to
and assign a temporary autogenerated
label name for it.

2 Emulator
Assume we have a program meant to
be executed in that architecture, and
assuming we don’t have a physical ver-

sion of a machine running this toy ar-
chitecture, one could simply use static
analysis using the disassembler to find
out what it does, by manually tracing
the code in her/his mind. However, We
can go one step further; we can utilise
dynamic analysis by emulating/simulat-
ing the program. You already know how
the disassembler works, and that is very
useful for writing an Emulator. The emu-
lator would likely have a area to simulate
the memory of the machine. It will also
have to have variables to represent the
registers of the machine. It would then,
like the real machine, simulate a ”Fetch”,
”Decode” and ”Execute” cycle until the
program ends. The ‘Fetch’ and ‘Decode’
process remains largely the same as in
the Disassembly process. The Execute
part is a bit more interesting. Usually
it would use a giant switch case or a
lookup table of function pointers to ex-
ecute it. The code in it would then do
what they’re supposed to do, i.e: modify
registers, store things to RAM, display
things on the screen, etc. Most crucially,
it would increment the program counter9

so that in the next iteration of the Fetch-
Decode-Execute Cycle, it would fetch the
next instruction (usually it is accessed
by RAM[pc])

9In some ISAs, this is called the Instruction
pointer, not to be confused with the Instruction
Register in some ISAs, which hold the contents
of the instruction itself

3 Anti-Debugging
Tricks

Completely different from the other sec-
tions, I just added this section because
I implemented some simple anti-debug
tricks in my challenge.

Debugging the process formally de-
fined as when a developer bashes their
against the wall repeatedly in frustra-
tion at 2:12am in the morning, talking
to their trusty rubber duck10 and praying
to whatever god they believe in, before
eventually heading to stackoverflow or
an obscure forum thread where they find
someone else had the same problem, but
the question was either closed as being a
Duplicate of a completely separate issue,
or the OP had ‘figured it out, nvm’ with-
out posting what their solution was, and
then realising 3 hours later the problem
was a missing semi-colon.

Jokes aside, a debugger is an invalu-
able tool allowing a developer to step
through their code line-by-line to find
the symptom of an error they might be
encountering. Reverse-engineers usually
do this with even assembly code, as there
is no way to hide that11.

Since this tool is so invaluable, a mali-
cious party who does not want their code
to be debugged can take several steps to
make it harder for it to be done so. So
how would one detect a debugging tool

10This is a real thing called rubber duck de-
bugging

11There is a variety of ways to obfuscate it
however. Insertion random unnecessary instruc-
tions, adding a compressor or decryption to gen-
erate instructions dynamically to avoid static
analysis, etc.

https://en.wikipedia.org/wiki/Rubber_duck_debugging
https://en.wikipedia.org/wiki/Rubber_duck_debugging

being used?
““Magic always leaves traces,” said

Dumbledore, as the boat hit the bank
with a gentle bump, “sometimes very
distinctive traces…””

If you would forgive my quote, do note
that the point I am trying to make is that
using the debugger would leave traces.
One such example that I will not go into
detail in is the environment variables.
Usually using a debugger such as gdb
would set up some additionally environ-
ment variables for the debugger program
itself to use, but this environment vari-
ables can be accessed by the child pro-
cess as well (it is a child process because
the debugger as the parent is the pro-
cess starts the child process- otherwise it
would not have access to be able to de-
bug it!), and so the program can simply
check for those environment variables.

Sometimes, there is even an API to
detect if the debugger is running. In
Windows, there is an IsDebuggerPresent
function that returns true if the debugger
is running. Another thing one could do
is check if the process has a parent pro-
cess. Or, since a debugger is being used,
it would be possible to do some sort of
timing attack to figure out if debugger is
used since it would have slightly different
timing and wouldn’t be as fast with a
debugger on, though this is risky as it
could simply be the case of a separate
computer just being slower.

The next question is what to do once
you detect a debugger is present. The
obvious answer would be to exit the pro-
gram to not allow the user to do anything
else. But there is a more evil thing to

do. It can break itself in subtle ways,
and ‘pretend’ to work. This would waste
the person’s time as they grow more and
more frustrated trying to figure out what
is wrong. This method has been used by
game developers in the past as a anti-
piracy tactic, with my favourite example
being in Earthbound where it makes the
game much harder, and if you do end
up getting near the end, right before the
climax it would freeze up and delete your
save file! Another excellent example is
a video game called Game Dev Tycoon
where players create video games and sell
it, and if the game detecst it is a pirated
version, it would tell the players their
games are being pirated and sales are
plummeting!

4 Further Reading
See the References section. The ”Ulti-
mate Game boy talk” also has various
other ”Ultimate X talks” in CCC con-
ference talks. The MGBA blog is also
good.

References
[] Mgba io (gameboy emu-

lator blog). URL https:
//mgba.io/tag/emulation.

[] Asami. https://book.rvemu.app/in-
dex.html.

[] CTurt. Cinoop gameboy emula-
tor. URL https://cturt.github.
io/cinoop.html.

https://docs.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-isdebuggerpresent
https://docs.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-isdebuggerpresent
https://www.ign.com/articles/2013/04/29/eight-of-the-most-hilarious-anti-piracy-measures-in-video-games
https://www.greenheartgames.com/2013/04/29/what-happens-when-pirates-play-a-game-development-simulator-and-then-go-bankrupt-because-of-piracy/
https://www.greenheartgames.com/2013/04/29/what-happens-when-pirates-play-a-game-development-simulator-and-then-go-bankrupt-because-of-piracy/
https://www.greenheartgames.com/2013/04/29/what-happens-when-pirates-play-a-game-development-simulator-and-then-go-bankrupt-because-of-piracy/
https://www.greenheartgames.com/2013/04/29/what-happens-when-pirates-play-a-game-development-simulator-and-then-go-bankrupt-because-of-piracy/
https://mgba.io/tag/emulation
https://mgba.io/tag/emulation
https://cturt.github.io/cinoop.html
https://cturt.github.io/cinoop.html

[] V. M. del Barrio. Study of the
techniques for emulation program-
ming. URL http://www.xsim.com/
papers/Bario.2001.emubook.pdf.

[] L. M. (M.Sc.). How to write
an emulator (chip-8 inter-
preter). URL http://www.
multigesture.net/articles/
how-to-write-an-emulator-chip-8-interpreter/.

[] I. Nazar. Gameboy emu-
lation in javascript. URL
http://imrannazar.com/
GameBoy-Emulation-in-JavaScript:
-The-CPU.

[] M. Steil. Ultimate gameboy
talk. URL https://www.youtube.
com/watch?v=HyzD8pNlpwI.

http://www.xsim.com/papers/Bario.2001.emubook.pdf
http://www.xsim.com/papers/Bario.2001.emubook.pdf
http://www.multigesture.net/articles/how-to-write-an-emulator-chip-8-interpreter/
http://www.multigesture.net/articles/how-to-write-an-emulator-chip-8-interpreter/
http://www.multigesture.net/articles/how-to-write-an-emulator-chip-8-interpreter/
http://imrannazar.com/GameBoy-Emulation-in-JavaScript:-The-CPU
http://imrannazar.com/GameBoy-Emulation-in-JavaScript:-The-CPU
http://imrannazar.com/GameBoy-Emulation-in-JavaScript:-The-CPU
https://www.youtube.com/watch?v=HyzD8pNlpwI
https://www.youtube.com/watch?v=HyzD8pNlpwI

	Introduction
	Emulator
	Disassembler
	AND masking
	Bit Shifting

	Emulator
	Anti-Debugging Tricks
	Further Reading

