Cybersecurity

Binary Exploitation and Reverse Engineering

Naavin Ravinthran

Monash (Malaysian Campus) SIG

A CRYPTO NERD'S WHAT WOULD

A IMAGINATION & { ACTUALLY HAPPEN:

HIS LAPTOPS ENCRYPTED. H'S LAPTOP'S ENCRYPTED.

LETS BUILD A MILLION-DOLLAR, DRUG HIM AND HIT HIM WITH

CLUSTER To CRACK \T- THIS $5 WRENCH UNTIL
NO GooD! TS HETE}ELETHEPP&SLDED
UoGe -BIT Rﬁﬁ" GOT T,

Evll. F‘LHN

15 FOILED! ™~

Who am [?

mailto:nrav0005@student.monash.edu

Who am [?

mailto:nrav0005@student.monash.edu

Who am 17

» Year 2 Student

mailto:nrav0005@student.monash.edu

Who am 17

» Year 2 Student

» | like Security stuff. I've made some challenges before.

mailto:nrav0005@student.monash.edu

Who am 17

» Year 2 Student
» | like Security stuff. I've made some challenges before.
» Email: nrav0005@student.monash.edu

mailto:nrav0005@student.monash.edu

Who am 17

» Year 2 Student
» | like Security stuff. I've made some challenges before.
» Email: nrav0005@student.monash.edu

» Discord: Yes#0952 (join the SOIT Discord server!
#cybersecurity channel)

mailto:nrav0005@student.monash.edu

MARIE Christmas

But your work is not done yet! You get up slowly, up from your knees, and start running to your quarters. You feel the wind brushing against your face, you
hear the insects of dusk, the smell of the dew from the grass, you can see from your peripherals the orange light emerging as the sun rises. You smile,
knowing that you now have a purpose n life. It allin the palm of your hands.

‘You unclench your fist to reveal the flash drive from earlier in the palm of your hands. You cautiously plug the flash drive into your laptop, and inside you find
this python script. Your job is to figure out the password.

#1/usr/bin/eny pythons

You could use timeit, but I used time

Amport tine

import sys

import randon

import re

class cpu:
def _init_(self):
self.ac = @
self.pe =@
self.halted = False
self.xor_counter = ©

False
self.start_tine = time.tine()

self.memory = [0 for _ in str(OxFFF)]

self.func_table = [self._jns, self._load, self._store, self._add, self._subt, self._input, self._output,
self._halt, self. skipcond, self._jump, self._clear, self._addi, self._jumpi,
self. loadi, self. storei, self. nop]

def __get arg(self):
return self.memory[self.pc] & 0b0O0O111111111111

def _fetch(selr):
return self.memory[self.pc]

RSA Challenge

RSA Challenge #2!

You are the top Cryptographer in the country. Shortly after reading up the mailing list "The Cryptographer's Message Digest" before bed, you decide to check
your emails. Surprisingly, you find a PGP Encrypted official email from the government.

Subject Header: Government Request
Greetings,

| am Secretary Rachel writing on behalf of Chairman R. Anderson of the National Security Council.

Our nation's future is at stake! My former superior, Mr Warded Densnow, has defected to the government of, our public adversary, Genovia. Our intelligence
has gathered that Mr Densnow has been leaking national secrets on the WINKEY forums, under the guise of “concerns for the Public's privacy”, though truly
there has been a paper trail of cryptocurrency going into his wallet originating from known wallet addresses of Genovia's royalty. This is with no doubt, a plot
from Genovia's Prime Minister Julian Andrews, to stir up doubt with the government in the community and disrupt the upcoming elections.

For our fellow citizens' safety, we wish to keep Mr Densnow's arrest as quiet as possible, and to do this we would need to submit a fake post posing as Mr
Densnow on the WINKEY forums, saying he would retire himself from the community.

Unfortunately, Mr Densnow uses RSA Cr to verify his r . We have his 3 public keys, attached to this email.

You are required to find his private keys, so that a fake message can be sent on his behalf, or else his correspondents will realise he has been arrested and
will leak the source code of our sophisticated surveillance programs that we have invested billions on!

YYou are required to work on this exclusively (or, with aid from the NSC) on your own. We will hash out the details of your compensation in the future. Your
country thanks you.

Regards,

Ross

Tic Tac Toe Challenge

Tic Tac Toe

O X

Computer:
0

Session

19m 38s left

What is a binary?

» Isn't it base-27 100010157

What is a binary?

» Isn't it base-27 100010157

» Short for binary executable. A program you run.

What is a binary?

» Isn't it base-27 100010157
» Short for binary executable. A program you run.

» It is in native machine code, e.g: compiled from C or C++ or
Rust, not from interpreted languages like Python/Ruby/Java,
although the interpreter itself is a binary that can be exploited.

What is a binary?

» Isn't it base-27 100010157

Short for binary executable. A program you run.

v

» It is in native machine code, e.g: compiled from C or C++ or
Rust, not from interpreted languages like Python/Ruby/Java,
although the interpreter itself is a binary that can be exploited.

» The main three are the following:-
» Executable and Linkable Format (ELF) files, standard binary
file format for Unix and Unix-Like systems.
> Portable Executable (PE), “.exe" extension, used on Windows

systems.
» Mach-O - Used by systems based on the Mach kernel, i.e: i0OS,
macOS.

What is a binary?

» Isn't it base-27 100010157

Short for binary executable. A program you run.

v

» It is in native machine code, e.g: compiled from C or C++ or
Rust, not from interpreted languages like Python/Ruby/Java,
although the interpreter itself is a binary that can be exploited.

» The main three are the following:-

» Executable and Linkable Format (ELF) files, standard binary
file format for Unix and Unix-Like systems.
> Portable Executable (PE), “.exe" extension, used on Windows

systems.
» Mach-O - Used by systems based on the Mach kernel, i.e: i0OS,

macOS.

Note: You can also apply the exploitation to shared library files like
DLLs or .so files, if a binary uses those.

What is a binary?

» Isn't it base-27 100010157

Short for binary executable. A program you run.

v

» It is in native machine code, e.g: compiled from C or C++ or
Rust, not from interpreted languages like Python/Ruby/Java,
although the interpreter itself is a binary that can be exploited.

» The main three are the following:-

» Executable and Linkable Format (ELF) files, standard binary
file format for Unix and Unix-Like systems.
> Portable Executable (PE), “.exe" extension, used on Windows

systems.
» Mach-O - Used by systems based on the Mach kernel, i.e: i0OS,

macOS.

Note: You can also apply the exploitation to shared library files like
DLLs or .so files, if a binary uses those.

ELF file

M Okteta File Edit

UNew v KOpen HSave HSaveAs Kjundo v @Redo v gy Cut Copy

printing.exe €9 | printing.o €

0000:0000 7F454C46 02010100 00000000 OOQO 0000 DELF
0000:0010 02003E00 01000000 40104000 COEOOO00|..>..... @.@.....
0000:0020 40000000 00000000 603A0000 0OCOOO00|@....... “Zoa0000
0000:0030 COCO0O00 40003800 ODOO4000 24002300@.8...0@.%.#.

0000 :0040 06000000 04000000 40000000 OOOOO00|........ T oacaca
0000:0050 40004000 C0000000 40004000 00000000 @.Q..... @.@.....
0000:0060 D8020000 00000000 DE0O20000 EOEOOO00|A....... (o cacaca
0000:0070 08000000 00000000 03000000 04000000|...........vvn..
0000:0080 18030000 00000000 18034000 OEOOOOEO|.......... Bocoao

0000:0090 18034000 C0000000 1CO00000 OOOOO00|..@C... ... vvnn.
0000 :00A0 1CO00000 PO000000 01000000 OOOOO00|................
0000:00B0 01000000 04000000 00000000 EOOOOOO0|................
0000:00C0 00004000 PO000000 0004000 QOCOOOOO|..@....... Gocoao
0000:00D0 90050000 EOO00000 90050000 OOOOOO0|...........vvnn.
0000 :0OED 00100000 POO000000 01000000 O5000000|................
0000:00F0 00100000 00000000 00104000 OEOOOOO|.......... Ghoooo
0000:0100 00104000 EOO00000 D5010000 0000000 ..Q..... Wococaoo
0000:0110 D501 0000 00000000 00100000 OOOOO00O|0...........v...
0000:0120 01000000 04000000 00200000 OOOOO00|.........
0000:0130 00204000 00000000 00204000 00000000|. @...... Ghoooo
0000:0140 50010000 00000000 50010000 E00OOO00|P....... [Pococaoo

EXE file

M Okteta File Edit

| New ~ [Open Save |id Save As) undo ~ (¥ Redo ~ 4 Cut Copy
; y . g

printing.exe €

0000:0000 5A9@@@ 03000000 04000000 FFFFOQ0Q0 Z yy..
0000:0010 B80O QOO0 00000000 40000000 OO0EOOO0OO|,....... @
0000:0020 00000000 OQEOOOE0 OOOOOE0 EEEOEOOO |cvon....
0000:0030 0000QOQ0 COQOO000 COOOOOQO 8OCOEOOO |ovvvuvvnnnn.
0000:0040 OE1FBAOE 00B409CD 21B8014C CD215468 ..2.. . I! .LI!Th
0000:0050 69732070 726F6772 616D2063 616EBEGF is program canno
0000:0060 74206265 2072756E 20696E20 444F5320 t be run in DOS
0000:0070 6D6F 6465 2EQDODOA 24000000 0OEOCO 00 mode....$.......
0000:0080 50450000 4C011100 58F2DF60 00440300 PE. L JXOB®.D. .

0000:0090 F606 0000 EQ000601 0B010224 00720000(6...a...... k3cPoo
0000 : 00A0 00AB0000 POOCO000 CO140000 00100000|.7...... . S
0000:00B0 00900000 00004000 00100000 00020000 (I
0000:00C0 04000000 01000000 04000000 OOOOOO0|...........vvnn.
0000:00D0 00000400 0060000 DIBBO400 03004001 |........ U..... @.

0000 :POED 00002000 00100000 00001000 00100000|..
0000:00F0 00000000 10000000 00000000 OOOOOO0|................
0000:0100 00EQ 0O 00 24060000 00000000 00000000 .a..$...........
0000:0110 00000000 0000000 00000000 OOOOOO0|........cvvvvnn.
0000:0120 00100100 34040000 00000000 OOOOO00|....4...........
0000:0130 00000000 00000000 0000000 EOOOOOO0|................
0000:0140 70A00000 13000000 00000000 OOOOOO0O|pvvvnn.

Assembly Language

The scary boogeyman that Real programmers program in.

Compiler Explorer uses cookies and other related techs o serve you 18 Don'tconsent ok Consent

Assembly Language

» Get used to it...

https://godbolt.org/

Assembly Language

» Get used to it...

» Get a reference for the instructions.

https://godbolt.org/

Assembly Language

» Get used to it...
» Get a reference for the instructions.
» Godbolt is helpful.

https://godbolt.org/

Assembly Language

» Get used to it...
» Get a reference for the instructions.
» Godbolt is helpful.

P disassemble programs.

https://godbolt.org/

Assembly Language

» Get used to it...

» Get a reference for the instructions.
» Godbolt is helpful.

P disassemble programs.

>

You can try write your own assembly programs (this will also
become helpful if you ever want to write your own shellcode)

https://godbolt.org/

There are other assembly languages too...

|int square(int)|

There are other assembly languages too...

MIPS gec 5.4 (el) (Editor #1, Compiler #1) C++ X
MIPS gce 5.4 (el)

A~ ®Output.~ YFilter..~ [Libraries < Ad
1 square(int):
$sp, $sp, -8
p,4(%sp)
P, 5P
r 8{ ':}

Useful Tools

Main tools | will be talking about.
» radare2/rizin (Open-Source TUI RE debugger) (dynamic)
» gdb/lldb (terminal debuggers) (dynamic)
» Ghidra (Open-Source RE tool by the NSA) (mostly static)

https://github.com/rshipp/awesome-malware-analysis#debugging-and-reverse-engineering

Useful Tools

Main tools | will be talking about.

| 2
>
>

radare2/rizin (Open-Source TUI RE debugger) (dynamic)
gdb/lldb (terminal debuggers) (dynamic)
Ghidra (Open-Source RE tool by the NSA) (mostly static)

Other tools you may be interested in

>

>
>
>

v

pwntools (python framework for helping in exploitation)
IDA Pro (Paid RE tool similar to Ghidra)
Cutter (Open-Source GUI frontend for rizin)

x64Dbg/WinDbg/OllyDbg (various GUI Debuggers in
Windows)

Binary Ninja

. many more! See this list.

https://github.com/rshipp/awesome-malware-analysis#debugging-and-reverse-engineering

A few examples

>

>

>

I'll go through the very basic use of gdb and rizin, and just
show how Ghidra looks like.

I'll mostly be talking about a buffer overflow to smash the
stack.

gdb manual

radare2 manual Note: Examples | give were compiled

specifically to use as examples (with debugging information,
no compiler optimisations, etc.). Real-life situations may vary.
Note 2: Although sometimes developers forget. Super Mario
64’'s North America cartridge was accidentally release without
optimisations, making it easier for reverse engineers to
understand the code. Apple forgot to strip debug symbols
once for iOS.

https://sourceware.org/gdb/current/onlinedocs/gdb/
https://book.rada.re/
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-3.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-3.html

Try it out yourself

Go ahead, good luck! :) This is just the tip of the iceberg.

Try it out yourself

Go ahead, good luck! :) This is just the tip of the iceberg.
» gdb, radare2 and ghidra all have a lot more features

» For example, gdb and radare2 have watchpoints, to break
whenver a certain area of memory is accessed or written to.

P radare2 has built-in binary patching to rewrite some assembly
instructions and re-write them to the binary (breaking the
digital signature if there is any though.)

Further exploration

» Use of Shellcode (not unreasonable for loT devices. ROP can
be used to mmap/VirtualAlloc executable memory.)

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://exploit.education/phoenix/

Further exploration

» Use of Shellcode (not unreasonable for loT devices. ROP can
be used to mmap/VirtualAlloc executable memory.)
» Return-Oriented-Programming

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://exploit.education/phoenix/

Further exploration

» Use of Shellcode (not unreasonable for loT devices. ROP can
be used to mmap/VirtualAlloc executable memory.)

» Return-Oriented-Programming

» String format exploits (“%<specifier>" in printf)

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://exploit.education/phoenix/

Further exploration

| 4

»
>
>
>
>

v

Use of Shellcode (not unreasonable for loT devices. ROP can
be used to mmap/VirtualAlloc executable memory.)
Return-Oriented-Programming

String format exploits (“%<specifier>" in printf)

Fuzzing (automated tools to try common exploits)

Heap vulnerabilities

DLL Injection / LD_PRELOAD Hooking (Liveoverflow has
videos on this)

Liveoverflow Youtube series

Search for “Crackmes” online, or look for categories on
“Binary exploitation” in CTFs. Be careful not to infect your
system!

Exploit Education’s “Phoenix” challenges are fun.

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://exploit.education/phoenix/

Further exploration

| 4

»
>
>
>
>

v

Use of Shellcode (not unreasonable for loT devices. ROP can
be used to mmap/VirtualAlloc executable memory.)
Return-Oriented-Programming

String format exploits (“%<specifier>" in printf)

Fuzzing (automated tools to try common exploits)

Heap vulnerabilities

DLL Injection / LD_PRELOAD Hooking (Liveoverflow has
videos on this)

Liveoverflow Youtube series

Search for “Crackmes” online, or look for categories on
“Binary exploitation” in CTFs. Be careful not to infect your
system!

Exploit Education’s “Phoenix” challenges are fun.

I've been told some of you may just be interested in
Certificates. Offensive Security is good. Comptia Security+ is
more for penetration testers. Security Plus All are expensive,
try see if you need it for the job or see if you can get them to

<SNON<OYr VvOll

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://exploit.education/phoenix/

Other Sources

gdb manual

rizin manual

radare2 manual

intel x86 reference manual

(PAID) Practical Binary Analysis - Dennis Andriesse

(PAID) Practical Malware Analysis - Michael Sikorski and
Andrew Honig

vVvyVvVvYyypy

https://sourceware.org/gdb/current/onlinedocs/gdb/
https://book.rizin.re/
https://book.rada.re/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

