
Cybersecurity
Binary Exploitation and Reverse Engineering

Naavin Ravinthran

Monash (Malaysian Campus) SIG





Who am I?

I Year 2 Student
I I like Security stuff. I’ve made some challenges before.
I Email: nrav0005@student.monash.edu
I Discord: Yes#0952 (join the SOIT Discord server!

#cybersecurity channel)

mailto:nrav0005@student.monash.edu


Who am I?

I Year 2 Student
I I like Security stuff. I’ve made some challenges before.
I Email: nrav0005@student.monash.edu
I Discord: Yes#0952 (join the SOIT Discord server!

#cybersecurity channel)

mailto:nrav0005@student.monash.edu


Who am I?
I Year 2 Student

I I like Security stuff. I’ve made some challenges before.
I Email: nrav0005@student.monash.edu
I Discord: Yes#0952 (join the SOIT Discord server!

#cybersecurity channel)

mailto:nrav0005@student.monash.edu


Who am I?
I Year 2 Student
I I like Security stuff. I’ve made some challenges before.

I Email: nrav0005@student.monash.edu
I Discord: Yes#0952 (join the SOIT Discord server!

#cybersecurity channel)

mailto:nrav0005@student.monash.edu


Who am I?
I Year 2 Student
I I like Security stuff. I’ve made some challenges before.
I Email: nrav0005@student.monash.edu

I Discord: Yes#0952 (join the SOIT Discord server!
#cybersecurity channel)

mailto:nrav0005@student.monash.edu


Who am I?
I Year 2 Student
I I like Security stuff. I’ve made some challenges before.
I Email: nrav0005@student.monash.edu
I Discord: Yes#0952 (join the SOIT Discord server!

#cybersecurity channel)

mailto:nrav0005@student.monash.edu


MARIE Christmas



RSA Challenge



Tic Tac Toe Challenge



What is a binary?
I Isn’t it base-2? 10001012?

I Short for binary executable. A program you run.
I It is in native machine code, e.g: compiled from C or C++ or

Rust, not from interpreted languages like Python/Ruby/Java,
although the interpreter itself is a binary that can be exploited.

I The main three are the following:-
I Executable and Linkable Format (ELF) files, standard binary

file format for Unix and Unix-Like systems.
I Portable Executable (PE), “.exe” extension, used on Windows

systems.
I Mach-O - Used by systems based on the Mach kernel, i.e: iOS,

macOS.
Note: You can also apply the exploitation to shared library files like
DLLs or .so files, if a binary uses those.



What is a binary?
I Isn’t it base-2? 10001012?
I Short for binary executable. A program you run.

I It is in native machine code, e.g: compiled from C or C++ or
Rust, not from interpreted languages like Python/Ruby/Java,
although the interpreter itself is a binary that can be exploited.

I The main three are the following:-
I Executable and Linkable Format (ELF) files, standard binary

file format for Unix and Unix-Like systems.
I Portable Executable (PE), “.exe” extension, used on Windows

systems.
I Mach-O - Used by systems based on the Mach kernel, i.e: iOS,

macOS.
Note: You can also apply the exploitation to shared library files like
DLLs or .so files, if a binary uses those.



What is a binary?
I Isn’t it base-2? 10001012?
I Short for binary executable. A program you run.
I It is in native machine code, e.g: compiled from C or C++ or

Rust, not from interpreted languages like Python/Ruby/Java,
although the interpreter itself is a binary that can be exploited.

I The main three are the following:-
I Executable and Linkable Format (ELF) files, standard binary

file format for Unix and Unix-Like systems.
I Portable Executable (PE), “.exe” extension, used on Windows

systems.
I Mach-O - Used by systems based on the Mach kernel, i.e: iOS,

macOS.
Note: You can also apply the exploitation to shared library files like
DLLs or .so files, if a binary uses those.



What is a binary?
I Isn’t it base-2? 10001012?
I Short for binary executable. A program you run.
I It is in native machine code, e.g: compiled from C or C++ or

Rust, not from interpreted languages like Python/Ruby/Java,
although the interpreter itself is a binary that can be exploited.

I The main three are the following:-
I Executable and Linkable Format (ELF) files, standard binary

file format for Unix and Unix-Like systems.
I Portable Executable (PE), “.exe” extension, used on Windows

systems.
I Mach-O - Used by systems based on the Mach kernel, i.e: iOS,

macOS.

Note: You can also apply the exploitation to shared library files like
DLLs or .so files, if a binary uses those.



What is a binary?
I Isn’t it base-2? 10001012?
I Short for binary executable. A program you run.
I It is in native machine code, e.g: compiled from C or C++ or

Rust, not from interpreted languages like Python/Ruby/Java,
although the interpreter itself is a binary that can be exploited.

I The main three are the following:-
I Executable and Linkable Format (ELF) files, standard binary

file format for Unix and Unix-Like systems.
I Portable Executable (PE), “.exe” extension, used on Windows

systems.
I Mach-O - Used by systems based on the Mach kernel, i.e: iOS,

macOS.
Note: You can also apply the exploitation to shared library files like
DLLs or .so files, if a binary uses those.



What is a binary?
I Isn’t it base-2? 10001012?
I Short for binary executable. A program you run.
I It is in native machine code, e.g: compiled from C or C++ or

Rust, not from interpreted languages like Python/Ruby/Java,
although the interpreter itself is a binary that can be exploited.

I The main three are the following:-
I Executable and Linkable Format (ELF) files, standard binary

file format for Unix and Unix-Like systems.
I Portable Executable (PE), “.exe” extension, used on Windows

systems.
I Mach-O - Used by systems based on the Mach kernel, i.e: iOS,

macOS.
Note: You can also apply the exploitation to shared library files like
DLLs or .so files, if a binary uses those.



ELF file



EXE file



Assembly Language
The scary boogeyman that Real programmers program in.



Assembly Language
I Get used to it...

I Get a reference for the instructions.
I Godbolt is helpful.
I disassemble programs.
I You can try write your own assembly programs (this will also

become helpful if you ever want to write your own shellcode)

https://godbolt.org/


Assembly Language
I Get used to it...
I Get a reference for the instructions.

I Godbolt is helpful.
I disassemble programs.
I You can try write your own assembly programs (this will also

become helpful if you ever want to write your own shellcode)

https://godbolt.org/


Assembly Language
I Get used to it...
I Get a reference for the instructions.
I Godbolt is helpful.

I disassemble programs.
I You can try write your own assembly programs (this will also

become helpful if you ever want to write your own shellcode)

https://godbolt.org/


Assembly Language
I Get used to it...
I Get a reference for the instructions.
I Godbolt is helpful.
I disassemble programs.

I You can try write your own assembly programs (this will also
become helpful if you ever want to write your own shellcode)

https://godbolt.org/


Assembly Language
I Get used to it...
I Get a reference for the instructions.
I Godbolt is helpful.
I disassemble programs.
I You can try write your own assembly programs (this will also

become helpful if you ever want to write your own shellcode)

https://godbolt.org/


There are other assembly languages too...



There are other assembly languages too...



Useful Tools
Main tools I will be talking about.
I radare2/rizin (Open-Source TUI RE debugger) (dynamic)
I gdb/lldb (terminal debuggers) (dynamic)
I Ghidra (Open-Source RE tool by the NSA) (mostly static)

Other tools you may be interested in
I pwntools (python framework for helping in exploitation)
I IDA Pro (Paid RE tool similar to Ghidra)
I Cutter (Open-Source GUI frontend for rizin)
I x64Dbg/WinDbg/OllyDbg (various GUI Debuggers in

Windows)
I Binary Ninja
I ... many more! See this list.

https://github.com/rshipp/awesome-malware-analysis#debugging-and-reverse-engineering


Useful Tools
Main tools I will be talking about.
I radare2/rizin (Open-Source TUI RE debugger) (dynamic)
I gdb/lldb (terminal debuggers) (dynamic)
I Ghidra (Open-Source RE tool by the NSA) (mostly static)

Other tools you may be interested in
I pwntools (python framework for helping in exploitation)
I IDA Pro (Paid RE tool similar to Ghidra)
I Cutter (Open-Source GUI frontend for rizin)
I x64Dbg/WinDbg/OllyDbg (various GUI Debuggers in

Windows)
I Binary Ninja
I ... many more! See this list.

https://github.com/rshipp/awesome-malware-analysis#debugging-and-reverse-engineering


A few examples
I I’ll go through the very basic use of gdb and rizin, and just

show how Ghidra looks like.
I I’ll mostly be talking about a buffer overflow to smash the

stack.
I gdb manual
I radare2 manual Note: Examples I give were compiled

specifically to use as examples (with debugging information,
no compiler optimisations, etc.). Real-life situations may vary.
Note 2: Although sometimes developers forget. Super Mario
64’s North America cartridge was accidentally release without
optimisations, making it easier for reverse engineers to
understand the code. Apple forgot to strip debug symbols
once for iOS.

https://sourceware.org/gdb/current/onlinedocs/gdb/
https://book.rada.re/
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-3.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-3.html


Try it out yourself
Go ahead, good luck! :) This is just the tip of the iceberg.

I gdb, radare2 and ghidra all have a lot more features
I For example, gdb and radare2 have watchpoints, to break

whenver a certain area of memory is accessed or written to.
I radare2 has built-in binary patching to rewrite some assembly

instructions and re-write them to the binary (breaking the
digital signature if there is any though.)



Try it out yourself
Go ahead, good luck! :) This is just the tip of the iceberg.
I gdb, radare2 and ghidra all have a lot more features
I For example, gdb and radare2 have watchpoints, to break

whenver a certain area of memory is accessed or written to.
I radare2 has built-in binary patching to rewrite some assembly

instructions and re-write them to the binary (breaking the
digital signature if there is any though.)



Further exploration
I Use of Shellcode (not unreasonable for IoT devices. ROP can

be used to mmap/VirtualAlloc executable memory.)

I Return-Oriented-Programming
I String format exploits (“%<specifier>” in printf)
I Fuzzing (automated tools to try common exploits)
I Heap vulnerabilities
I DLL Injection / LD_PRELOAD Hooking (Liveoverflow has

videos on this)
I Liveoverflow Youtube series
I Search for “Crackmes” online, or look for categories on

“Binary exploitation” in CTFs. Be careful not to infect your
system!

I Exploit Education’s “Phoenix” challenges are fun.
I I’ve been told some of you may just be interested in

Certificates. Offensive Security is good. Comptia Security+ is
more for penetration testers. Security Plus All are expensive,
try see if you need it for the job or see if you can get them to
sponsor you.

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://exploit.education/phoenix/


Further exploration
I Use of Shellcode (not unreasonable for IoT devices. ROP can

be used to mmap/VirtualAlloc executable memory.)
I Return-Oriented-Programming

I String format exploits (“%<specifier>” in printf)
I Fuzzing (automated tools to try common exploits)
I Heap vulnerabilities
I DLL Injection / LD_PRELOAD Hooking (Liveoverflow has

videos on this)
I Liveoverflow Youtube series
I Search for “Crackmes” online, or look for categories on

“Binary exploitation” in CTFs. Be careful not to infect your
system!

I Exploit Education’s “Phoenix” challenges are fun.
I I’ve been told some of you may just be interested in

Certificates. Offensive Security is good. Comptia Security+ is
more for penetration testers. Security Plus All are expensive,
try see if you need it for the job or see if you can get them to
sponsor you.

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://exploit.education/phoenix/


Further exploration
I Use of Shellcode (not unreasonable for IoT devices. ROP can

be used to mmap/VirtualAlloc executable memory.)
I Return-Oriented-Programming
I String format exploits (“%<specifier>” in printf)

I Fuzzing (automated tools to try common exploits)
I Heap vulnerabilities
I DLL Injection / LD_PRELOAD Hooking (Liveoverflow has

videos on this)
I Liveoverflow Youtube series
I Search for “Crackmes” online, or look for categories on

“Binary exploitation” in CTFs. Be careful not to infect your
system!

I Exploit Education’s “Phoenix” challenges are fun.
I I’ve been told some of you may just be interested in

Certificates. Offensive Security is good. Comptia Security+ is
more for penetration testers. Security Plus All are expensive,
try see if you need it for the job or see if you can get them to
sponsor you.

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://exploit.education/phoenix/


Further exploration
I Use of Shellcode (not unreasonable for IoT devices. ROP can

be used to mmap/VirtualAlloc executable memory.)
I Return-Oriented-Programming
I String format exploits (“%<specifier>” in printf)
I Fuzzing (automated tools to try common exploits)
I Heap vulnerabilities
I DLL Injection / LD_PRELOAD Hooking (Liveoverflow has

videos on this)
I Liveoverflow Youtube series
I Search for “Crackmes” online, or look for categories on

“Binary exploitation” in CTFs. Be careful not to infect your
system!

I Exploit Education’s “Phoenix” challenges are fun.

I I’ve been told some of you may just be interested in
Certificates. Offensive Security is good. Comptia Security+ is
more for penetration testers. Security Plus All are expensive,
try see if you need it for the job or see if you can get them to
sponsor you.

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://exploit.education/phoenix/


Further exploration
I Use of Shellcode (not unreasonable for IoT devices. ROP can

be used to mmap/VirtualAlloc executable memory.)
I Return-Oriented-Programming
I String format exploits (“%<specifier>” in printf)
I Fuzzing (automated tools to try common exploits)
I Heap vulnerabilities
I DLL Injection / LD_PRELOAD Hooking (Liveoverflow has

videos on this)
I Liveoverflow Youtube series
I Search for “Crackmes” online, or look for categories on

“Binary exploitation” in CTFs. Be careful not to infect your
system!

I Exploit Education’s “Phoenix” challenges are fun.
I I’ve been told some of you may just be interested in

Certificates. Offensive Security is good. Comptia Security+ is
more for penetration testers. Security Plus All are expensive,
try see if you need it for the job or see if you can get them to
sponsor you.

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://exploit.education/phoenix/


Other Sources
I gdb manual
I rizin manual
I radare2 manual
I intel x86 reference manual
I (PAID) Practical Binary Analysis - Dennis Andriesse
I (PAID) Practical Malware Analysis - Michael Sikorski and

Andrew Honig

https://sourceware.org/gdb/current/onlinedocs/gdb/
https://book.rizin.re/
https://book.rada.re/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

