
Attacking Network Protocols

SIG Cybersecurity
Starting soon...

2

What is a Network?

● Set of computes communicating with each other.

(can also have smartphones, laptops, etc. Also doesn’t need to be
wired)

3

You might be familiar with this stack

● (might be slightly different, if you have networking units just follow your lecture slides)
● We’ll focus on the Application layer, which is the payload by the programmer of an application.

4

IP Addresses

There are IPV4 and IPV6 IP Addresses.
● An IPV4 address might look like XXX.XXX.XXX.XXX, with

each XXX being an 8 bit number.
● IPV6 was made when they realised 32 bits weren’t enough

for every internet-connected device in the world, so they
transitioned to 128 bits, like
2001:0db8:85a3:0000:0000:8a2e:0370:7334 (btw we’re using
Hex now for compactness)

5

IP Addresses

There are local IP Addresses and public IP Addresses.
● Within your local network at home, each device in the

network has an IP Address, e.g 192.168.0.XXX (can be
other formats depending on your router). Usually you are
assigned one IP Address by asking the DHCP server
(usually part of your router).

● The public IP Address is by your router to communicate
with the rest of the world.

6

IP Addresses

● Note: 127.0.0.1, also known as
localhost, is a way to refer to
“yourself” or home.

7

Port numbers

● Say you have a computer X with local IP 192.168.0.23 and
you want to communicate with another computer Y on
the same network with IP 192.168.0.55.

● Computer Y is already having a network connection
active, perhaps browsing the Internet. What do we do?

● You can have multiple unique network connections
simultaneously by using different port numbers (it is a 16
bit number)

8

Port numbers

● Computer Y is a server on IP 192.168.0.55, listening on port
1234.

● Computer X connects to IP 192.168.0.55 on port 1234.
● They established a connection and can now communicate.

9

Port numbers

● Some port numbers are reserved for specific tasks.
● For example, port 21 is used for the File Transfer Protocol
● Port 80 is used for HTTP
● Port 443 is used for HTTPS
● (You can use ports 1-65535)

10

So they can send whatever data they want

11

Demo

● If this is confusing, this should hopefully clear things up. A short python demo of a
“server” and a “client”.

● Since I’m connecting to myself, I use “127.0.0.1” or “localhost” along with the port
number of the server. Otherwise, if you want to connect from a separate device on
the network, you need to find the IP address (You can find in Network Settings or
ipconfig/ifconfig and looking for “IPV4 Address” or similar.)

● If you want to connect from the internet, you’ll need to make sure your firewall is
not blocking the port (You should be able to add an exception for either the
program or the port number) and find out how to “port forward” on your router,
which varies depending on the router. Generally, you’ll have to figure out the IP
Address of the “server” and enter that along with the port number into your
router settings.

12

● The interpretation of the data they send is the protocol.
● If you decide that “if the first line says “LOGIN”, and the

next line means the name, third line means the
password”, that is a protocol you just made up.

● There are various protocols that are well-defined. HTTP,
Websockets, FTP, etc. You can usually find an RFC to read
up how the protocol is defined.

13

Byte representation

● A single memory address points to a single “byte”, which
is 2^8 possible values. We’ll represent it in hex, since it has
the nice property that the minimum is 00 and the max is
FF.

● Data is not always sent as nice readable strings, so you
can take a look at the hex dump of traffic and try to figure
it out.

14

15

● If you see hex numbers that are always around 0x20 to
0x7f range, it is likely it is readable ASCII text. Otherwise,
it’s probably either compacted data directly into the
binary without “stringifying” it, or it is compressed and/or
encrypted data.

● If you’re analysing it, you can check out the entropy of the
data. If it has a high entropy, it’s likely
compressed/encrypted.

16

Endianness

● Say you have a number “1234” but you can only store 1 digit
at each address in a computer. How would you store it?

● Address 0: 1, Address 1: 2, Address 2: 3, Address 3: 4
● Address 0: 4, Address 1: 3, Address 2: 2, Address 3: 1
● The first method is called Big Endian, second is Little Endian.

Some computers might use one or another (Except it’s in base
16 instead of base 10, so it’s each “hex digit” stored backward)

● Networking usually always uses Big Endian.

17

Endianness

● So if you have a number 0x12F, you will see it in a hex
dump of the traffic as “01 2F”.

● Decimal numbers are a bit trickier. Usually I use python to
unpack it.

18

HTTP Protocol – An Application level protocol

● https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
● https://rfcs.io/http
● DEMO
● Note: HTTP is stateless. Also it’s mostly readable text.
● Note: The javascript won’t execute ofc.
● Note: servers can respond differently depending on the

headers, for example, some people block the python user
agent.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://rfcs.io/http

19

Wireshark to sniff your network traffic.

● Note: There are other tools like Burp Suite or Fiddler
designed specifically with analysing specific application
level protocols like HTTP in mind.

● If you’re just interested in traffic from your web browser,
there are developer tools in most browsers that let you
see requests/responses.

20

Wireshark

21

Heres a pcap I found online

● I said earlier we’re only interested in the Application level. The text
before it are from the other levels. (If you use wireshark on HTTP
server earlier, you will see other things before the data you sent too)

22

● These are definitely in plain text, you can Google it.

23

Sniffing from other devices

● You probably won’t always be able to install programs on
other devices, e.g: If you’re reverse engineering an IoT
device and want to see what data it sends over the network.

● One way to still sniff traffic is through configuring a proxy.
● Device goes through your laptop as a proxy, which does a

Man-In-The-Middle, and sniffs the traffic, before forwarding
it towards the intended recipient, and vice versa.

24

mitmproxy

● mitmproxy is a free and
open source interactive
HTTPS proxy.

● https://mitmproxy.org/

25

mitmproxy

● Usually all you have to do is run the mitmproxy program,
and then on your device, you need to find a setting to
configure a network setting for a proxy server, and set it
to your laptop’s IP and port number (default is 8080).

26

Problems

● If the IoT device doesn’t support configuring proxies, you’re out of
luck.
 - You might have some luck configuring your laptop as a Wi-Fi
hotspot though and having your target device connect to that,
then sniff using Wireshark.

● If the traffic is using SSL/TLS, you won’t be able to do a MiTM
attack because the device checks against a trusted Certificate
Authority to make sure it’s really them with some cryptography,
and does encryption. (Sniffing SSL traffic is a problem even without
a proxy btw)

27

28

TLS/SSL Traffic

● Mitmproxy solves this by creating a “rogue” Certificate
Authority. You’ll have to configure the target device to
trust this Certificate Authority somehow, by installing a
CA cert on the device.

● Google is your friend. Mitmproxy has a very easy-to-follow
guide for common devices as well.

29

30

31

Examples

● For browsers like Firefox/Chrome, usually it’s in the
settings page somewhere.

● You might also be able install it to your device itself in
some Settings option. You might need to be an admin

● For phones, for current versions of Android and iPhones,
you need a rooted/jailbroken device to sniff TLS/SSL
traffic.

32

● BTW, some organisations and workplaces/schools install
these CA certs on your work devices to monitor your
network, even if you use TLS/SSL they can see what you’re
doing.

● DNS requests (use to query to convert website addresses
like “http://www.example.com” to an IP Address you can
connect to) still sometimes don’t use TLS to encrypt, so even
if you connect to a public hotspot they might know what
sites you visit.

http://www.example.com/

33

Demo

● Mitmproxy demo + short tutorial

34

Mitmproxy addons

● https://docs.mitmproxy.org/stable/addons-overview/
● Pretty powerful. You can create your own scripts to do

what you want.
● DEMO

https://docs.mitmproxy.org/stable/addons-overview/

35

Other Ways to sniff traffic

● When Reverse Engineering, we can split it into “Static
Analysis” and “Dynamic Analysis”

● Dynamic is analysis during runtime
● Static is analysis without running the code
● Note: If you’re analysing malware, you might want to

avoid using dynamic analysis.

36

Other Ways to sniff traffic

● You can inject code
to print out the
traffic when its
sent/retrieved.

https://confused.ai/
posts/intercepting-
zoom-tls-encryption-
bpf-uprobes

37

Other Ways to sniff traffic

● You can
decompile/disassemble the
program using a
decompiler such as IDA Pro,
Ghidra, etc.

38

Other Ways to sniff traffic

● For interpreted
languages like C#
and Java there are
decompilers like JD-
GUI
and ILSpy

39

Other Ways to sniff traffic

● If you decompile/disassemble it, you just need to read
through the code. Depending on how much they
obfuscated it, (i.e: how much they did to make it as hard
as possible to read when decompiled), this can be as easy
as just reading normal code and figuring out what it
does, or as hard as spending many days trying to make
sense of it and figure out what it does.

40

Serialisation/Deserialisation

● When we send data over the network, we occasionally want to
convert it back into code.

● E.g: Say we have a class for a Character in an MMO, along with its
position, rotations, etc in the World. Say we have an object of
“Character player1;” and want to send it over the network. We’ll want
to serialise this object into some binary data and send it over the
network.

● At the receiving end, we have to deserialise this data and turn it back
into a class. This deserialisation can be tricky and is one point of
attack.

41

Serialisation/Deserialisation

● For example, perhaps the Character is serialised to a
format like
“CharacterN<CharacterName>X<Xcoord>Y<Ycoord>Z<Zcoo
rd>”.

● Perhaps during deserialisation, it assumes the character
name is less than 20 characters, and overloading it causes
a buffer overflow. Perhaps Not specifying an X coordinate
will crash the server. Etc. Play around!

42

Application weaknesses

● Sometimes servers rely too much on the client-side checking.
By messing with the network protocol directly, you can
bypass any client-side checks by sending the data directly.

● E.g: Perhaps there is a check in a game for to prevent
sending “/ban player” if you’re not an admin. If they solely
relied on the client-side check and the server doesn’t do any
check, you can modify the game or send your own data
to “ban” the player directly.

43

Root causes of flaws

● Standard binary exploitation stuff, buffer overflows, e.g:
You send a packet that is longer than the server program
expects and overrun the stack, out-of-bounds buffer
indexing where you “ask” for the 10th index of an array
that only has 5 elements in it, letting you read some
memory, etc.

44

Sources

● Attacking Network Protocols (No Starch Press)
● Practical Binary Analysis (No Starch Press)
● MITMProxy documentation
● https://realpython.com/python-sockets/
● https://beej.us/guide/bgnet/html/
● https://github.com/gracenolan/Notes/blob/master/interview-

study-notes-for-security-engineering.md#networking

https://realpython.com/python-sockets/
https://beej.us/guide/bgnet/html/

45

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

