SIG Cybersecurity

Starting soon...

What is a Network?

* Set of computes communicating with each other.

Mainframe
node

W orkstation
node

Server

node

Figure 7-1: A simple network of three nodes

(can also have smartphones, laptops, etc. Also doesn't need to be

W|redi n

You might be familiar with this stack

* (might be slightly different, if you have networking units just follow your lecture slides)

* We'll focus on the Application layer, which is the payload by the programmer of an application.

0S| Reference Model TCP/IP Stack

== -
Application
Presentation « + Application
izl Session
‘II Transport “ + Transport = 4 Layers
Network + + Internet
|2| Data Link

Link

El Physical “

L —

—

IP Addresses

There are IPV4 and IPV6 IP Addresses.

* An IPV4 address might look like XXX XXX XXX XXX, with
each XXX being an 8 bit number.

* IPV6 was made when they realised 32 bits weren’t enough
for every internet-connected device in the world, so they
transitioned to 128 bits, like
2001:0db8:85a3:0000:0000:8a2e:0370:7334 (btw we're using
Hex now for compactness)

—

IP Addresses

There are local IP Addresses and public IP Addresses.

* Within your local network at home, each device in the
network has an IP Address, e.g 192.168.0.XXX (can be
other formats depending on your router). Usually you are
assigned one IP Address by asking the DHCP server
(usually part of your router).

* The public IP Address is by your router to communicate
with the rest of the world.

—

IP Addresses

* Note: 127.0.0.1, also known as
localhost, is a way to refer to
“yourself” or home.

| MEAN YOUR PHYSICAL ADDRESS ! 28:05:FF:58:31:05

Port numbers

* Say you have a computer X with local IP 192.168.0.23 and
you want to communicate with another computer Y on
the same network with IP 192.168.0.55.

 ComputerY is already having a network connection
active, perhaps browsing the Internet. What do we do?

* You can have multiple unique network connections
simultaneously by using different port numbers (it is a 16
bit number)

—

Port numbers

* ComputerY is aserver on IP 192.168.0.55, listening on port
1234.

* Computer X connects to IP 192.168.0.55 on port 1234.

* They established a connection and can now communicate.

—

Port numbers

* Some port numbers are reserved for specific tasks.

* For example, port 21 is used for the File Transfer Protocol
Port 80 is used for HTTP

Port 443 is used for HTTPS

* (You can use ports 1-65535)

—

So they can send whatever data they want

Listening on port 21 for FTP

Listening on port 80 for HTTP
) IP: 192.168.0.80

Client A Server

Connect to 192.168.0.80 on

port 21

Response : "220 (vsFTPd 2.5.4)“
<

Client B

 If this is confusing, this should hopefully clear things up. A short python demo of a
“server” and a “client”.

* Since I'm connecting to myself, I use “127.0.0.1” or “localhost” along with the port
number of the server. Otherwise, if you want to connect from a separate device on
the network, you need to find the IP address (You can find in Network Settings or
ipconfig/ifconfig and looking for “IPV4 Address” or similar.)

* If you want to connect from the internet, you’ll need to make sure your firewall is
not blocking the port (You should be able to add an exception for either the
program or the port number) and find out how to “port forward” on your router,
which varies depending on the router. Generally, you'll have to figure out the IP
Address of the “server” and enter that along with the port number into your
router settings.

—

* The interpretation of the data they send is the protocol.

* If you decide that “if the first line says “LOGIN", and the
next line means the name, third line means the
password”, that is a protocol you just made up.

* There are various protocols that are well-defined. HTTP,
Websockets, FTP, etc. You can usually find an RFC to read
up how the protocol is defined.

ﬁ

Byte representation

* Asingle memory address points to a single “byte”, which
Is 2A8 possible values. We'll represent it in hex, since it has

the nice property that the minimum is 00 and the max is
FF.

* Data is not always sent as nice readable strings, so you

can take a look at the hex dump of traffic and try to figure
it out.

ﬁ

ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] |64 40 @ 96 60

1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TABJ 41 29) 73 49 I 105 69 i
10 A [LINE FEED] 42 2A * 74 4A] 106 BA j
11 B [VERTICAL TAB] 43 2B 4 75 4B K 107 6Bk
12 C [FORM FEED] 44 2c 76 ac L 108 6C I
13 D [CARRIAGE RETURN] 45 2D 77 4D M 109 6D m
14 E [SHIFT QUT] 46 2E & 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F ! 79 4F (o] 111 6F (o]
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 3 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 u 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 Vv 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 30 90 5A Z 122 Az
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3 < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 50 1 125 7D}
30 1E [RECORD SEPARATOR] 62 3E > 94 S5E ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F 127 7F [DEL]

* If you see hex numbers that are always around 0x20 to
0x7f range, it is likely it is readable ASCII text. Otherwise,
it's probably either compacted data directly into the
binary without “stringifying” it, or it is compressed and/or
encrypted data.

* If you're analysing it, you can check out the entropy of the
data. If it has a high entropy, it’s likely
compressed/encrypted.

ﬁ

* Say you have a number “1234"” but you can only store 1 digit
at each address in a computer. How would you store it?

 Address 0: 1, Address 1: 2, Address 2: 3, Address 3: 4

 Address 0: 4, Address 1: 3, Address 2: 2, Address 3: 1

* The first method is called Big Endian, second is Little Endian.
Some computers might use one or another (Except it's in base
16 instead of base 10, so it’s each “hex digit” stored backward)

* Networking usually always uses Big Endian.

ﬁ

* So if you have a number 0x12F, you will see it in a hex
dump of the traffic as “01 2F".

* Decimal numbers are a bit trickier. Usually I use python to
unpack it.

HTTP Protocol - An Application level protocol

* https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
* https://rfcs.io/http

* DEMO

* Note: HTTP is stateless. Also it's mostly readable text.

* Note: The javascript won’t execute ofc.

* Note: servers can respond differently depending on the
headers, for example, some people block the python user
agent.

ﬁ

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://rfcs.io/http

Wireshark to sniff your network traffic.

* Note: There are other tools like Burp Suite or Fiddler
designed specifically with analysing specific application
level protocols like HTTP in mind.

* If you're just interested in traffic from your web browser,
there are developer tools in most browsers that let you

see requests/responses.

ﬁ

Wireshark

",5 attacks.pcap File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help g'\ :i [. . W2 E] 1!)])E - DBJDET’:I%SZZ E . []
ADA® CPRBBRRB 2 <> >k JHE E NN |
M ip.addr== 192.168.37.128 and ftp BHEY -+
No. Time Source Destination Protocol Length Leftover Capture Data Data

83075 61.671206 192.168.37.131 192.168.37.128 FTP 86

83076 61.672352 192.168.37.131 192.168.37.128 FTP 86

83079 61.674047 192.168.37.131 192.168.37.128 FTP 86

83081 61.676839 192.168.37.131 192.168.37.128 FTP 86

83083 61.681561 192.168.37.131 192.168.37.128 FTP 86

83085 61.684215 192.168.37.131 192.168.37.128 FTP 86

83087 61.686835 192.168.37.131 192.168.37.128 FTP 86

83089 61.688644 192.168.37.131 192.168.37.128 FTP 86

83091 61.691889 192.168.37.131 192.168.37.128 FTP 86

83093 61.694206 192.168.37.131 192.168.37.128 FTP 86

Frame 83075: 86 bytes on wire (688 bits), 86 bytes captured (688 bits)

Ethernet II, Src: VMware_b9:9a:36 (00:0c:29:b9:9a:36), Dst: VMware_6e:ch:16 (00:0c:29:6e:ch:16)
Internet Protocol Version 4, Src: 192.168.37.131, Dst: 192.168.37.128

Transmission Control Protocol, Src Port: 21, Dst Port: 41314, Seq: 1, Ack: 1, Len: 20

File Transfer Protocol (FTP)

[Current working directory:]

G0 Oc 29 6e cb 16 00 6c 29 b9 9a 36 08 0O 45 00 n) :6::E
00 48 0d Ob 40 00 40 06 61 51 cO a8 25 83 cO a8 H--@-@ aQ %
25 80 00 15 al 62 f@ 7e 7c 46 ac Of 4c 33 80 18 % b.~ |F-.L3
00 b5 d3 €b 00 00 01 61 08 Ga 00 00 71 4d 9f 86 k qM
61 c9 32 32 30 20 28 76 73 46 54 50 64 20 32 2e a 220 (v sFTPd 2.
33 2e 34 29 |od Ga 3.4)

® B Bytes 66-85: Text item (text) Packets: 234384 - Displayed: 1278 (0.5%) Profile: Default 20

Heres a pcap I found online

* Isaid earlier we're only interested in the Application level. The text
before it are from the other levels. (If you use wireshark on HTTP
server earlier, you will see other things before the data you sent too)

n)--6--E
@@ m- %
L]
a 220 (v sFTPd 2.
3.4)--

= N oy

(3]
5
b
3
!

=~ 0 P2

Bc
A6

o
72

@1
6C
65

* These are definitely in plain text, you can Google it.

29
fe
le
08
65
20

wikipedia.org

300 Series

Requested file action okay, completed.
"PATHNAME" created.

The command has been accepted, but the reques
User name okay, need password.

Need account for login.

Requested file action pending further information

=] P =] W M2

[]

:*331 Pl ease spe
cify the

W@ = —h

passwor

Sniffing from other devices

* You probably won’t always be able to install programs on
other devices, e.g: If you're reverse engineering an IoT
device and want to see what data it sends over the network.

* One way to still sniff traffic is through configuring a proxy.

* Device goes through your laptop as a proxy, which does a
Man-In-The-Middle, and sniffs the traffic, before forwarding
it towards the intended recipient, and vice versa.

ﬁ

>—

ommand Line Web Interface

* mitmproxy is a free and
open source interactive
HTTPS proxy.

Web Interface

* https://mitmproxy.org/

mitmweb. Do you like Chrome's DevTools? mitmweb gives youa
similar experience for any other application or device, plus
additional features such as request interception and replay.

from mitmproxy import http

def request(flow: http.HTTPFlow):

if flow.request.pretty host ==
flow.request.host = "mitmproxy

mple.com”:
org"

elif flow.request.path.endswith("/brew"):
flow.response = http.Response.make(
418, b"I'm a teapot",

)

Command Line

mitmproxy is your swiss-army knife for debugging, testing,
privacy measurements, and penetration testing. It can be used
to intercept, inspect, modify and replay web traffic such as
HTTP/1, HTTP/2, WebSockets, or any other SSL/TLS-protected
protocols. You can prettify and decode a variety of message
types ranging from HTML to Protebuf, intercept specific

messages on-the-fly, modify them before they reach their
destination, and replay them to a client or server later on.

B & | > =
Replay Delete Download
B Weed Sah S0
googeco GET %02
= GET 02
GET a0 eene 2tem 6 35:5
LGET 0 20 Mins
GET 0 1 2ms
51103 gogous . COET 200 120 am
| siiiantss goog | COET 200 2 T ol

Python API

Write powerful addons and script mitmproxy with mitmdump.
The scripting AP! offers full control over mitmproxy and makes it
possible to automatically modify messages, redirect traffic,
visualize messages, or implement custom commands.

mitmproxy

* Usually all you have to do is run the mitmproxy program,
and then on your device, you need to find a setting to
configure a network setting for a proxy server, and set it
to your laptop’s IP and port number (default is 8080).

Problems

* If the IoT device doesn’t support configuring proxies, you're out of
luck.
- You might have some luck configuring your laptop as a Wi-Fi
hotspot though and having your target device connect to that,
then sniff using Wireshark.

* If the traffic is using SSL/TLS, you won't be able to do a MiTM
attack because the device checks against a trusted Certificate
Authority to make sure it’'s really them with some cryptography,
and does encryption. (Sniffing SSL traffic is a problem even without
a proxy btw)

ﬁ

Certificate
Authority

1. Gives public key to everyone
(usually pre-installed in browsers)

B>
< o
53'90
3 07“'/“@
. 1 e
3. Checks with CA. OK O ey
this looks legit. : b
Client A Server

1. Connect to server.

2. Respond with signed certific
<

TLS/SSL Traffic

* Mitmproxy solves this by creating a “rogue” Certificate
Authority. You’ll have to configure the target device to
trust this Certificate Authority somehow, by installing a
CA cert on the device.

* Google is your friend. Mitmproxy has a very easy-to-follow
guide for common devices as well.

ﬁ

Rogue
Certificate

Authority

-

3. Checks with rogue
CA. OK this looks legit.

Client

1. Connect to server.

this looks legit.

Proxy

. Respond with signed fr
rogue CA certificate

<

3. Checks with CA. OK

Certificate
Authority

1. Gives public key to everyone
(usually pre-installed
in browsers)

>

Server

1. Connect to server.

2. Respond with signed
certificate from CA.

<

About Certificates

Mitmproxy can decrypt encrypted traffic on the fly, as long as the client trusts mitmproxy's built-in certificate authority. Usually

this means that the mitmproxy CA certificate has to be installed on the client device.

Quick Setup

By far the easiest way to install the mitmproxy CA certificate is to use the built-in certificate installation app. To do this, start
mitmproxy and configure your target device with the correct proxy settings. Now start a browser on the device, and visit the
magic domain mitm.it. You should see something like this:

& mitmproxy

Install mitmproxy's Certificate Authority

-- Windows
.. @ Get mitmproxy-ca-cert.p12 | B Show Instructions

Linux

Click on the relevant icon, follow the setup instructions for the platferm you’re on and you are good to go.

* For browsers like Firefox/Chrome, usually it’s in the
settings page somewhere.

* You might also be able install it to your device itself in
some Settings option. You might need to be an admin

* For phones, for current versions of Android and iPhones,
you need a rooted/jailbroken device to sniff TLS/SSL

traffic.

ﬂ

 BTW, some organisations and workplaces/schools install
these CA certs on your work devices to monitor your
network, even if you use TLS/SSL they can see what you're
doing.

* DNS requests (use to query to convert website addresses
like “http://www.example.com” to an IP Address you can
connect to) still sometimes don’t use TLS to encrypt, so even
if you connect to a public hotspot they might know what
sites you visit.

http://www.example.com/

* Mitmproxy demo + short tutorial

Mitmproxy addons

* https://docs.mitmproxy.org/stable/addons-overview/

* Pretty powerful. You can create your own scripts to do
what you want.

* DEMO

ﬂ

https://docs.mitmproxy.org/stable/addons-overview/

Other Ways to sniff traffic

* When Reverse Engineering, we can split it into “Static
Analysis” and “Dynamic Analysis”

* Dynamic is analysis during runtime
* Static is analysis without running the code

* Note: If you're analysing malware, you might want to
avoid using dynamic analysis.

ﬂ

Other Ways to sniff traffic

Confused

® Yo u c a n i nj e ct co d e A’ © twitter.com/alessandrod) github.com/alessandrod
to print out the i

. . Putting it all together
t ra ffl c W h e n Its We've written uprobes for sSL_read , SSL_write , connect and getaddrinfo . With them we can see what

DNS queries the zoom client does, what addresses it connects to and what encrypted data it sends and

sent/retrieved.

The final output looks like this:

$ sudo target/debug/snuffy --hex-dump --trace-connections --command /opt/zoom/zoom --offsets 2z
[4:56:18] Connected to 127.0.0.53:53
[4:56:18] Resolved us@4web.zoom.us to 3.235.69.6

https://confused.ai/ :56128] Comeceed o tobbvt soun.us 4 (3.235.6.6:443)

[4:56:19] Write 571 bytes to us@4web.zoom.us:443 (3.235.69.6:443)
[4:56:19] |5@4f5354 20217265 6C656173 656e6T74| POST /releasenot 00000000
° ° [4:56:19] |65732048 5454502 312e31@d 0a486T73| es HTTP/1.1..Hos Q@@e0@le
post S/I nte rce ptl n g- [4:56:19] |743a2075 73303477 65622e7a 6T6f6d2e| t: us@4web.zoom. 00000020
[4:56:19] |7573@d@a 55736572 2d416765 6e743a2@| us..User-Agent: 00000830
[4:56:19] |4d6f7ab9 6c6c612f 352e3020 285a4T4f| Mozilla/5.@ (Z0O 00000B40

Zoo m t I s e n c r t. [4:56:19] |4d2e4c69 6e75782@ 5562756e ?4?52@31| M.Linux Ubuntu 1 @00@0e5@
-tls- yption

[4:56:19] Read 3088 bytes from us@4web.zoom.us:443 (3.235.69.6:443)
[4:56:19] |48545450 2f312e31 20323030 200dea44| HTTP/1.1 200 ..D 00000000

b pf- u p ro b e s [4:56:19] |6174653a 20467269 2c203034 20536570| ate: Fri, @4 Sep 0eeeoele
[4:56:19] |20323032 30203@35 3a31313a 30352047| 2020 05:11:05 G 00000020

[4:56:19] |4d54@d@a 436T6e74 656e742d 54797065| MT..Content-Type 00000830

[4:56:19] |3a20617@ 706c6963 6174696T 6e2f782d| : application/x- @eeeoe4e
[4:56:19] |7@726T74 6T627566 3b636861 72736574| protobuf;charset 0eeeoese

_ - a2y

e b e s e s

Other Ways to sniff traffic

8 E @G0B s |

TNEFA

You can
decompile/disassemble the
program using a
decompiler such as IDA Pro,
Ghidra, etc.

UTTOET LTTEUS

undefined4

f0l011a@
fa1811ad
pa1ellab
fB1811a8
palellaa
B@1811ab
201011b2
001011b7
001811be
fe1011c3
palelica
ee1011ct
601011d6
pe1@11dd

f01011df
pplellel

201811e6

le

ec
ae
Bc

ec
ae
@c

ec
"1%]
Bc

ec
"1%]
3d
o0

e

8b

fa

0}

1}

1%

1%

o]

STALR [- ORI S Jaas

Stack[-8x333...

main

ENDBRG4
PUSH
PUSH
PUSH
PUSH
suB
OR
suB
OR
suB
OR
suB
MOV
XOR
XOR
MOV

MOV

A CTOLIm

user_input

XREF[5]:

~::=;,Ex1222

gword ptr [RSP]=>raw_bytes[24],0x0

RSP, 0x1000

gword ptr [RSF]=rhexencodedstr[4120],0x0
RSP, 0x1000

gqword ptr [RSP]=*hexencodedstr[24],@x0
RSP, Bx%328

RDI,qword ptr [stdin]

RAX,qword ptr FS:[Bx28]

Other Ways to sniff traffic

* For interpreted
languages like C#
and Java there are
decompilers like JD-
GUI
and ILSpy

File Edit Navigation Search Help
Al ARGk

% CryptoAllPermissionCollection.class - Java Decompiler

= jeejars @)

+-# META-INF
—# javax.crypto
+ & interfaces
-+ 88 spec
+ i AEADBadTagException.dass
+ s BadPaddingException.dlass
— s Cipher.dass
+ @ Cipher
it CipherInputStream.class
T CipherOutputStream.dass
tw CipherSpi.class

B R R

Cry io
=& CryptoAIIPerm:ssmnCoHectlon
| = all_allowed : boolean
| % serialVersionUID : long
| 9 a CrvptoAllpermlssmnCDHEdmn()
i e add(Permission) : voi
i @ elements() : Enumeration
® implies(Permission) : boolean
% CryptoPermission.dass
t» CryptoPermissionCollection.dass
#a CryptoPermissions.dass
fa CryptoPolicyParser.class
fa» EnayptedPrivateKeyInfo.class
t» ExemptionMechanism.class
1t ExemptionMechanismException.class
tw ExemptionMechanismSpi.dass
‘w TllegalBlockSizeException.dass
b JarVerifier.class
fa JceSecurity.class
tw JeeSecurityManager.class
‘w KeyAgreement.class
4 KeyAgreementSpi.dass

R -_\— FEEE R EEREE

1 KeyGenerator.class

f CryptoAllPermissionCollection.class 6

extends PermissionCollection
implements Serializable

private static final long serialVersionUID = 74580768683808144072L;
private boolean all_allowed;

CryptoAllPermissionCollection()
8
128 this.all allowed = false;
}

public void add(Permission paramPermission)

{
l40@ if (isReadOnly()) {
141 throw new SecurityException(“attempt to add 2 F

b
if (paramPermission != CryptoAllPermission.INSTANCE) {
return;

1
this.all allowed = true; @
}

public boolean implies(Permission paramPermission)

{
1608 if (!(paramPermission instanceof CryptoPermission)) {
161 return false;

¥

return this.all allowed;

}

public Enumeration<Permission> elements()
e
Vector localVector = new Vector(1);

| <

Figure 6-22: JD-GUI with an open JAR File

Other Ways to sniff traffic

* If you decompile/disassemble it, you just need to read
through the code. Depending on how much they
obfuscated it, (i.e: how much they did to make it as hard
as possible to read when decompiled), this can be as easy
as just reading normal code and figuring out what it
does, or as hard as spending many days trying to make
sense of it and figure out what it does.

ﬂ

Serialisation/Deserialisation

* When we send data over the network, we occasionally want to
convert it back into code.

* E.g: Say we have a class for a Character in an MMO, along with its
position, rotations, etc in the World. Say we have an object of
“Character player1;” and want to send it over the network. We'll want
to serialise this object into some binary data and send it over the
network.

* At the receiving end, we have to deserialise this data and turn it back
into a class. This deserialisation can be tricky and is one point of
attack.

ﬂ

Serialisation/Deserialisation

* For example, perhaps the Character is serialised to a

format like
“CharacterN<CharacterName>X<Xcoord>Y<Ycoord>Z<Zcoo

rd>".

* Perhaps during deserialisation, it assumes the character
name is less than 20 characters, and overloading it causes
a buffer overflow. Perhaps Not specifying an X coordinate
will crash the server. Etc. Play around!

ﬁ

Application weaknesses

* Sometimes servers rely too much on the client-side checking.
By messing with the network protocol directly, you can
bypass any client-side checks by sending the data directly.

* E.g: Perhaps there is a check in a game for to prevent
sending “/ban player” if you'’re not an admin. If they solely
relied on the client-side check and the server doesn’t do any
check, you can modify the game or send your own data

to “ban” the player directly.

ﬂ

Root causes of flaws

« Standard binary exploitation stuff, buffer overflows, e.g:
You send a packet that is longer than the server program
expects and overrun the stack, out-of-bounds buffer
indexing where you “ask” for the 10*" index of an array
that only has 5 elements in it, letting you read some
memory, etc.

ﬂ

* Attacking Network Protocols (No Starch Press)

* Practical Binary Analysis (No Starch Press)
 MITMProxy documentation

* https://realpython.com/python-sockets/
* https://beej.us/guide/bgnet/html/

* https://github.com/gracenolan/Notes/blob/master/interview-
study-notes-for-security-engineering.md#networking

ﬂ

https://realpython.com/python-sockets/
https://beej.us/guide/bgnet/html/

45

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

