
A Short Introduction to Brute-Forcing RSA

赖纳文

November 16 2020

Abstract
This paper, as the title suggests, intro-
duces a brief overview on how to brute-
force RSA cryptography. This could ei-
ther mean given the encryption key and
modulus, the decryption key would be
retrieved, or given the decryption key
and modulus, the encryption key would
be retrieved.

A brief explanation of RSA and how
to use it is also covered, although proof
of its correctness is out-of-scope of this
paper. 1

1 Introduction
RSA is an assymmetric, or public-key
cryptosystem, meaning that there are
separate keys used for encryption and
decryption. Details of the RSA cryp-
tosystem were first publicly described in
1977 and a formal paper was published
in 1978. [4] The basic premise is that
the cryptosystem relies on the difficulty
of factoring two prime numbers.

1For the curious, See section VI of the
original RSA paper[4] which makes use Fer-
mat’s Little Theorem, or alternatively here:
https://www.di-mgt.com.au/rsa_theory.html

That is to say, where p and q are prime,
and given:-

n = p · q

It would be “difficult” (i.e: could not
be done in polynomial time 2) to find
p and q given simply just n and e or d.
3 n could be factored in only one way
using primes (excluding rearrangements),
as proven by the Fundamental Theorem
of Arithmetic. 4

This process is called integer factorisa-
tion 5.

2For now, I advise to just think of it [poly-
nomial time] as “ the time scaling depending
on the value at a reasonable rate”. If you are
familiar with Big O notation, polynomial time is
in Big O notation O(nc), don’t worry too much
if you don’t understand.

3Technically speaking, we don’t have mathe-
matical proof it isn’t possible (on classical com-
puters at least, on Quantum computers there is
an algorithm called Shor’s Algorithm for this),
it’s an open unsolved problem in computer sci-
ence

4This was proven by Euclid thousands of
years ago and you can find a proof online.

5Or rather, f actorization for our American
counterparts

1

https://www.di-mgt.com.au/rsa_theory.html

2 Process
There are several processes involved,
namely, the encryption process, decryp-
tion process, and the key generation pro-
cess. We will be working backwards,
starting with encryption/decryption first,
so we can understand how RSA is used,
then move on to how to generate RSA
keys. First off, some key terms:-

2.0.1 n - modulus

The product of prime numbers p and q.
This is given out along with the pub-
lic key d. Sometimes when references
are made to the “public key”, it is im-
plied that this modulus is included. See
RFC8017 [3] Section A.1.1 for more in-
formation. Not to be confused with the
‘Absolute Value’ function of no relation
also called Modulus.

2.0.2 e - encryption key

Also known as the public key. It is used
to encrypt messages. Normally the num-
ber 65537 is used6, although technically
any number which is between 1 and the
totient function (see next the totient
function sections below) and is coprime7

with the totient function can be used.
6Notice how 65537 is actually 216 +1, which

is actually called a Fermat prime. It’s used be-
cause it’s faster to do certain calculations (one
of the modular exponentiation algorithms) be-
cause this number in binary form is 10000.....12
and only has two 1s.

7Also known as relatively prime or mutually
prime. Basically an integer where the greatest
common divisor of itself and the number it is
coprime with is 1.

2.0.3 d - decryption key

Also known as the private key. It is used
to decrypt messages.

2.0.4 C - ciphertext

The message in its encrypted form.

2.0.5 P - plaintext

The message before encryption, or equiv-
alantly: the encrypted message after be-
ing decrypted.

2.0.6 φ - Euler’s totient function

This was the totient function used in the
original RSA paper.[4] The result of φ(n)
is the number of positive integers less
than n that are coprime with n itself.

Euler’s product formula states

φ(n) = n
∏
p|n

(1− 1

p
)

But there is a short way to do this in
our case, given n = p · q where p and q
are primes, φ(n) can be derived from p
and q like so8 :-

φ = (p− 1) · (q − 1)

2.0.7 λ - Carmichael’s totient
function

This is an improved ‘reduced’ totient
function that is used in place of Euler’s
totient function sometimes. It’s used
in the PKCS#1 RFC8017[3], which is a

8See: http://www.math.unl.edu/ tmar-
ley1/math189/notes/Nov20notes.pdf for proof

http://www.math.unl.edu/~tmarley1/math189/notes/Nov20notes.pdf
http://www.math.unl.edu/~tmarley1/math189/notes/Nov20notes.pdf

specification for an RSA implementation.
It gives a different and smaller number
than Euler’s totient function, while still
functioning the same in context of RSA.
λ(n) can be derived from primes p and
q like so:-

λ = lcm((p− 1), (q − 1))

where lcm is the lowest common mul-
tiple.9

Now, we can move on to the actual
processes

2.1 Encryption
The ciphertext C can be derived from the
plaintext, encryption key, and modulus
like so:-

C ≡ P e mod n

2.2 Decryption
The plaintext P can be derived from the
ciphertext, decryption key, and modulus
like so:-

P ≡ Cd mod n

You may notice that since it is mod n,
the resulting plaintext can must be less
than or equal to the modulus (P 6 n),
and yes that is indeed true. For that rea-
son we can only encrypt messages which
in length are less than or equal to the

9There exists a formula for calculating the
lcm using the gcd (which you can, of course,
find using the Euclidean algorithm), lcm(a, b) =

|a·b|
gcd(a,b) . Proof not provided.

modulus. In practice, very large num-
bers for p and q are used and this isn’t
a problem. 10

2.3 Key Generation
First, compute the modulus n as the
product of two arbritatrily chosen primes.
11

n = p · q

Then we need to find d and e such
that:-

d · e ≡ 1 mod φ(n)

or alternatively

d · e ≡ 1 mod λ(n)

That is to say, d and e are modu-
lar multiplicative inverses of each other
mod φ(n) or λ(n) .

You then choose either the decryption
key d or the encryption key e by being

10Furthermore, since RSA is ‘slow’, usually a
separate faster symmetric encryption system is
used, and RSA is simply used to encrypt the
key for that cryptosystem, which need not be
so long.

11If the purpose was for stronger encryption,
they won’t be so arbritarily chosen. Generally,
bigger numbers are better as it will take longer
to break. The original paper [4] recommends
around 100 digits for p and q to end up with
a roughly 200 digit modulus n. It also recom-
mends for the two numbers to differ in length
by a few digits to protect against “sophisticated
factoring algorithms” which is not covered in
this paper. For the curious, this is through Fer-
mat Factorisation, which you are likely familiar
with from Secondary School, even if you didn’t
know the name of it. It is difference of two
squares. a2 − b2 = (a+ b) · (a− b)

choosing an integer which is coprime to
a totient function (either one. Euler’s
totient function was used in the original
RSA paper, Carmichael’s totient func-
tion is the ‘improved’ version), see above.

Note that some sources may say some-
thing like ‘determine d = e−1 ≡ φ(n) ’
which is an abuse of notation since you
cannot solve that since e−1 is not an in-
teger value.

Instead, solve it using the Extended
Euclidean Algorithm like a normal lin-
ear congruence. For example, for an lin-
ear congruence 3x ≡ 1 mod 5, change it
into the form 3x− 5k = 1 where k is an
integer, and find the greatest common di-
visor using the Euclidean Algorithm of 3
and 5, then use the Extended Euclidean
Algorithm to find an integer value for x.
Do recall that there are multiple integer
solutions for x and k (Refer to lecture
notes and recorded lectures and/or tuto-
rials), usually we will use a positive value
for x since that is easier to work with.

2.4 Fast Modular Exponen-
tiation (extra)

Not strictly neccessary for small num-
bers, but for a large number you may be
able to optimise modular exponentiaion
(used in encryption/decryption) by split-
ting the mod for each variable. For
example, an example using m is 5, the

modulus is 22, and e is 13.12

C ≡ me mod n

C ≡ 513 mod 22

C ≡ (52)
3
(5) mod 22

C ≡ (25 mod 22)3(5) mod 22

C ≡ (3)6(5) mod 22

C ≡ (729 mod 22) ∗ 5 mod 22

C ≡ 15 mod 22

Thus we don’t have to compute the
large number 513 and can simply work
with smaller numbers like 36 and 5, which
is especially useful if you are doing 64-bit
calculations and resulting numbers of me

are larger than that. 13

Details of implementation in code is
left as an exercise to the reader.14

3 Brute-Forcing to find
p and q

Finally on to the most interesting part.
From subsection 2.3 we can see an equa-
tion involving d, e and n. Great! We
have e and n, it should be trivial to get
d right, by way of Euler’s Extended Al-
gorithm?

12This example was taken directly from one
of the MAT1830 Lectures.

13Python, as always, already has a function
that does modular exponentiation, and in any
case, numbers in python aren’t restricted to
any number of bits. But I thought this was an
interesting thing to discuss, and it would come
in handy if you were working in a lower-level
language.

14Some key terms which may be useful are
‘modular exponenetiation’ or ‘modpow’, with
the ‘pow’ standing for ‘power’.

Not exactly. We need to calculate φ(n)
or λ(n) to use as the modulus. Previ-
ously we used a short way by using either
Euler’s totient function or Carmichael’s
totient functions; but that only works if
we know the values of p and q!

For now, let’s assume the key genera-
tion is using Euler’s totient function. If
you don’t recall, Euler’s totient function
returns the number of integers less than
n that are coprime with n itself. And so
we start with this basic algorithm to find
φ(n)

Input: modulus n
Output: Euler’s totient function

(number of integers < n
that is coprime to n)

set counter to 0;
for numbers in range 1 through n
inclusive do

if gcd(current_number, n) is
equal to 1 then

add 1 to counter;
end

end
return counter;

Algorithm 1: Euler’s Totient Brute
Force
We could also just manually use the

product sum rule as mentioned above.
Also note that it’s assuming we’re using
Euler’s totient function, so it won’t work
if Carmichael’s totient function was used.
Alternatively, since we know that φ(n)
can be computed using (p − 1)(q − 1)
where p and q are prime numbers, and
p · q = n, and we have n, and we know
that there is only one way to factorise
n15, we can instead opt to find p and q,

15As I mentioned earlier, through way of the

so that we can compute φ(n) easily using
the short method of (p− 1) · (q − 1)

Input: modulus n
Output: The prime factors of n
for numbers in range 2 through n
inclusive do

if current number is divisible
by n then

return current number and
n

currentnumber
;

end
end

Algorithm 2: Prime Factorisation
Brute Force
Since this method retrieves both p and

q, it could work with either totient func-
tion.

There are a number of optimisations
that can be done. For example, we
only need to loop through until b

√
nc

(If you’re not familiar with the notation
of floor, it is simply rounding down.) 16.
And since we know that it can be com-
puted using (p− 1)(q− 1) where p and q
are prime numbers, we can get a list of
prime numbers, and try to see if modulus
n divides a certain prime 17 minus 1, for
example r−1 where r is a prime number.
The trade-off of course being that you
would have to maintain a list of prime
numbers.

As a reminder, once p and q are ob-
tained, one could go through the key

Fundamental Thoerem of Arithmetic
16The proof isn’t long, try it yourself by using

a proof by contradiction. Also perhaps starting
from

√
n and then working backwards might be

faster.
17If you recall, you can check if a number

divides another by checking if the remainder is
0 during division

generation step as in subsection 2.3, and
then use the Extended Euclidean Algo-
rithm to obtain d.

4 Further Reading
At the time of writing, the wikipedia ar-
ticle on RSA[5] is fairly comprehensive
if you want a deeper understanding of
RSA. For further information on attack-
ing RSA, there is this paper “Twenty
Years of Attacks on the RSA Cryptosys-
tem” [1] which covers methods such as
“Coppersmith’s Attack” and “Wiener’s
Attack”. There is also Revisiting Fer-
mat’s Factorization for the RSA Modulus
[2] which covers Fermat’s Factorisation
for finding p and q.

References
[1] Dan Boneh. Twenty years of attacks

on the rsa cryptosystem. NOTICES
OF THE AMS, 46, 02 2002.

[2] Sounak Gupta and Goutam Paul. Re-
visiting fermat’s factorization for the
rsa modulus, 2009.

[3] Kathleen Moriarty, Burt Kaliski,
Jakob Jonsson, and Andreas Rusch.
Pkcs #1: Rsa cryptography specifica-
tions version 2.2. RFC 8017, Novem-
ber 2016.

[4] R. L. Rivest, A. Shamir, and L. Adle-
man. A method for obtaining digital
signatures and public-key cryptosys-
tems. Communications of the ACM,
21(2):120–126, February 1978.

[5] Wikipedia. RSA (cryptosys-
tem) — Wikipedia, the
free encyclopedia. http:
//en.wikipedia.org/w/index.
php?title=RSA%20(cryptosystem)
&oldid=989291810, 2020. [Online;
accessed 20-November-2020].

http://en.wikipedia.org/w/index.php?title=RSA%20(cryptosystem)&oldid=989291810
http://en.wikipedia.org/w/index.php?title=RSA%20(cryptosystem)&oldid=989291810
http://en.wikipedia.org/w/index.php?title=RSA%20(cryptosystem)&oldid=989291810
http://en.wikipedia.org/w/index.php?title=RSA%20(cryptosystem)&oldid=989291810

	Introduction
	Process
	n - modulus
	e - encryption key
	d - decryption key
	C - ciphertext
	P - plaintext
	phi - Euler's totient function
	lambda - Carmichael's totient function

	Encryption
	Decryption
	Key Generation
	Fast Modular Exponentiation (extra)

	Brute-Forcing to find p and q
	Further Reading

